{"id":"https://openalex.org/W2724612619","doi":"https://doi.org/10.1109/fg.2017.75","title":"Unleash the Black Magic in Age: A Multi-Task Deep Neural Network Approach for Cross-Age Face Verification","display_name":"Unleash the Black Magic in Age: A Multi-Task Deep Neural Network Approach for Cross-Age Face Verification","publication_year":2017,"publication_date":"2017-05-01","ids":{"openalex":"https://openalex.org/W2724612619","doi":"https://doi.org/10.1109/fg.2017.75","mag":"2724612619"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/fg.2017.75","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100424261","display_name":"Xiaolong Wang","orcid":"https://orcid.org/0000-0002-5061-2529"},"institutions":[{"id":"https://openalex.org/I4210101778","display_name":"Samsung (United States)","ror":"https://ror.org/01bfbvm65","country_code":"US","type":"company","lineage":["https://openalex.org/I2250650973","https://openalex.org/I4210101778"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Xiaolong Wang","raw_affiliation_strings":["Samsung Research America, Mountain View, CA, USA"],"affiliations":[{"raw_affiliation_string":"Samsung Research America, Mountain View, CA, USA","institution_ids":["https://openalex.org/I4210101778"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5000117252","display_name":"Yin Zhou","orcid":"https://orcid.org/0000-0001-7536-7753"},"institutions":[{"id":"https://openalex.org/I4210101778","display_name":"Samsung (United States)","ror":"https://ror.org/01bfbvm65","country_code":"US","type":"company","lineage":["https://openalex.org/I2250650973","https://openalex.org/I4210101778"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yin Zhou","raw_affiliation_strings":["Samsung Research America, Mountain View, CA, USA"],"affiliations":[{"raw_affiliation_string":"Samsung Research America, Mountain View, CA, USA","institution_ids":["https://openalex.org/I4210101778"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5046957909","display_name":"Deguang Kong","orcid":"https://orcid.org/0000-0001-9415-8439"},"institutions":[{"id":"https://openalex.org/I4210101778","display_name":"Samsung (United States)","ror":"https://ror.org/01bfbvm65","country_code":"US","type":"company","lineage":["https://openalex.org/I2250650973","https://openalex.org/I4210101778"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Deguang Kong","raw_affiliation_strings":["Samsung Research America, Mountain View, CA, USA"],"affiliations":[{"raw_affiliation_string":"Samsung Research America, Mountain View, CA, USA","institution_ids":["https://openalex.org/I4210101778"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5018394419","display_name":"Jon Currey","orcid":null},"institutions":[{"id":"https://openalex.org/I4210101778","display_name":"Samsung (United States)","ror":"https://ror.org/01bfbvm65","country_code":"US","type":"company","lineage":["https://openalex.org/I2250650973","https://openalex.org/I4210101778"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jon Currey","raw_affiliation_strings":["Samsung Research America, Mountain View, CA, USA"],"affiliations":[{"raw_affiliation_string":"Samsung Research America, Mountain View, CA, USA","institution_ids":["https://openalex.org/I4210101778"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100324967","display_name":"Dawei Li","orcid":"https://orcid.org/0000-0003-0258-1147"},"institutions":[{"id":"https://openalex.org/I4210101778","display_name":"Samsung (United States)","ror":"https://ror.org/01bfbvm65","country_code":"US","type":"company","lineage":["https://openalex.org/I2250650973","https://openalex.org/I4210101778"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Dawei Li","raw_affiliation_strings":["Samsung Research America, Mountain View, CA, USA"],"affiliations":[{"raw_affiliation_string":"Samsung Research America, Mountain View, CA, USA","institution_ids":["https://openalex.org/I4210101778"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5047215778","display_name":"Jiayu Zhou","orcid":"https://orcid.org/0000-0003-4336-6777"},"institutions":[{"id":"https://openalex.org/I87216513","display_name":"Michigan State University","ror":"https://ror.org/05hs6h993","country_code":"US","type":"education","lineage":["https://openalex.org/I87216513"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jiayu Zhou","raw_affiliation_strings":["Michigan State University, East Lansing, MI, USA"],"affiliations":[{"raw_affiliation_string":"Michigan State University, East Lansing, MI, USA","institution_ids":["https://openalex.org/I87216513"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.287,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":14,"citation_normalized_percentile":{"value":0.73331,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":88,"max":89},"biblio":{"volume":"36","issue":null,"first_page":"596","last_page":"603"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11448","display_name":"Face Recognition and Analysis Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11448","display_name":"Face Recognition and Analysis Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10775","display_name":"Generative Adversarial Networks in Image Processing","score":0.9898,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11322","display_name":"Facial Fillers and Rejuvenation Techniques","score":0.9834,"subfield":{"id":"https://openalex.org/subfields/2708","display_name":"Dermatology"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/leverage","display_name":"Leverage (statistics)","score":0.63980174},{"id":"https://openalex.org/keywords/aging-face","display_name":"Aging Face","score":0.603524},{"id":"https://openalex.org/keywords/facial-landmark-detection","display_name":"Facial Landmark Detection","score":0.590193},{"id":"https://openalex.org/keywords/facial-expression-analysis","display_name":"Facial Expression Analysis","score":0.578908},{"id":"https://openalex.org/keywords/facial-rejuvenation","display_name":"Facial Rejuvenation","score":0.564276},{"id":"https://openalex.org/keywords/age-estimation","display_name":"Age Estimation","score":0.55555},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.455723},{"id":"https://openalex.org/keywords/task-analysis","display_name":"Task analysis","score":0.43813008},{"id":"https://openalex.org/keywords/deep-neural-networks","display_name":"Deep neural networks","score":0.41854906}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.79850245},{"id":"https://openalex.org/C153083717","wikidata":"https://www.wikidata.org/wiki/Q6535263","display_name":"Leverage (statistics)","level":2,"score":0.63980174},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.574981},{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.521688},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.51007396},{"id":"https://openalex.org/C31510193","wikidata":"https://www.wikidata.org/wiki/Q1192553","display_name":"Facial recognition system","level":3,"score":0.50396675},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.455723},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4459944},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.43822518},{"id":"https://openalex.org/C175154964","wikidata":"https://www.wikidata.org/wiki/Q380077","display_name":"Task analysis","level":3,"score":0.43813008},{"id":"https://openalex.org/C2779304628","wikidata":"https://www.wikidata.org/wiki/Q3503480","display_name":"Face (sociological concept)","level":2,"score":0.42878994},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.41900915},{"id":"https://openalex.org/C2984842247","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep neural networks","level":3,"score":0.41854906},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.3391604},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.07323024},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C36289849","wikidata":"https://www.wikidata.org/wiki/Q34749","display_name":"Social science","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/fg.2017.75","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities","score":0.77}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":55,"referenced_works":["https://openalex.org/W1167806532","https://openalex.org/W1509966554","https://openalex.org/W1530965581","https://openalex.org/W1686810756","https://openalex.org/W1896424170","https://openalex.org/W1902269034","https://openalex.org/W1905153633","https://openalex.org/W1944092705","https://openalex.org/W1950843348","https://openalex.org/W1972960842","https://openalex.org/W1997566808","https://openalex.org/W1998808035","https://openalex.org/W2001242835","https://openalex.org/W2009088607","https://openalex.org/W2009746375","https://openalex.org/W2020447345","https://openalex.org/W2024160000","https://openalex.org/W2031250362","https://openalex.org/W2040751730","https://openalex.org/W2066454034","https://openalex.org/W2078046525","https://openalex.org/W2078417509","https://openalex.org/W2096733369","https://openalex.org/W2102674365","https://openalex.org/W2103077782","https://openalex.org/W2106488920","https://openalex.org/W2111084364","https://openalex.org/W2115394472","https://openalex.org/W2115651492","https://openalex.org/W2115891208","https://openalex.org/W2118099552","https://openalex.org/W2118664399","https://openalex.org/W2118755929","https://openalex.org/W2123497994","https://openalex.org/W2126972425","https://openalex.org/W2131148434","https://openalex.org/W2132852291","https://openalex.org/W2134113392","https://openalex.org/W2139690636","https://openalex.org/W2145287260","https://openalex.org/W2145773134","https://openalex.org/W2146502635","https://openalex.org/W2149194912","https://openalex.org/W2155893237","https://openalex.org/W2157364932","https://openalex.org/W2163605009","https://openalex.org/W2164715565","https://openalex.org/W2166939233","https://openalex.org/W2168056867","https://openalex.org/W2177203915","https://openalex.org/W2203580091","https://openalex.org/W2325939864","https://openalex.org/W2594202937","https://openalex.org/W2732644179","https://openalex.org/W3099206234"],"related_works":["https://openalex.org/W4381280689","https://openalex.org/W3128025644","https://openalex.org/W3125827053","https://openalex.org/W2985118265","https://openalex.org/W2920521957","https://openalex.org/W2847365777","https://openalex.org/W2787993192","https://openalex.org/W2750422482","https://openalex.org/W2355048207","https://openalex.org/W2158269427"],"abstract_inverted_index":{"Facial":[0],"aging":[1,34],"is":[2,40],"a":[3,19,41,49,90],"complicated":[4],"process":[5],"which":[6],"usually":[7],"affects":[8],"the":[9,23,31,37,72,98,104,115,125,131,148],"facial":[10,16],"appearance":[11,17],"(e.g.,":[12],"wrinkles).":[13],"Variations":[14],"of":[15,33,74,106],"pose":[18],"big":[20],"challenge":[21],"to":[22,29,36,58,70],"automatic":[24],"face":[25,76,86,107],"recognition":[26],"problem.":[27,44],"How":[28],"eliminate":[30],"influence":[32],"factors":[35],"verification":[38,87,108],"performance":[39,165],"very":[42],"challenging":[43],"Multi-task":[45],"learning":[46,54,82],"has":[47,144],"provided":[48],"principled":[50],"framework":[51,83,133],"for":[52,84],"jointly":[53],"multiple":[55],"related":[56],"tasks":[57,105],"improve":[59,71],"generalization":[60],"performance.":[61],"In":[62],"this":[63,67],"paper,":[64],"we":[65],"leverage":[66],"powerful":[68],"technique":[69],"task":[73],"cross-age":[75,85],"verification.":[77],"We":[78,112,129],"present":[79],"an":[80],"end-to-end":[81],"by":[88,159],"designing":[89],"multi-task":[91],"deep":[92],"neural":[93],"network":[94],"architecture":[95],"that":[96,114,141],"exploits":[97],"intrinsic":[99],"low-dimensional":[100],"representation":[101],"shared":[102],"between":[103,124],"and":[109,121,154,163],"age":[110],"estimation.":[111],"show":[113],"algorithm":[116,143],"effectively":[117],"balances":[118],"feature":[119,122],"sharing":[120],"exclusion":[123],"two":[126,135],"given":[127],"tasks.":[128],"evaluate":[130],"proposed":[132],"on":[134,152,157],"standard":[136],"benchmarks.":[137],"Experimental":[138],"results":[139],"demonstrate":[140],"our":[142],"significant":[145],"improvement":[146],"over":[147],"state-of-theart":[149],"(2.2%":[150],"EER":[151,156],"MORPH":[153],"7.8%":[155],"FG-NET,":[158],"more":[160],"than":[161],"50.0%":[162],"59.70%":[164],"gain":[166],"respectively).":[167]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2724612619","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":1},{"year":2021,"cited_by_count":5},{"year":2020,"cited_by_count":1},{"year":2019,"cited_by_count":3},{"year":2017,"cited_by_count":2}],"updated_date":"2024-11-02T08:37:51.495844","created_date":"2017-07-14"}