{"id":"https://openalex.org/W2743619817","doi":"https://doi.org/10.1109/dsc.2017.81","title":"Mining Users\u2019 Important Locations and Semantics on Cellular Network Data","display_name":"Mining Users\u2019 Important Locations and Semantics on Cellular Network Data","publication_year":2017,"publication_date":"2017-06-01","ids":{"openalex":"https://openalex.org/W2743619817","doi":"https://doi.org/10.1109/dsc.2017.81","mag":"2743619817"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/dsc.2017.81","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5042011491","display_name":"Yupeng Tuo","orcid":null},"institutions":[{"id":"https://openalex.org/I4210165038","display_name":"University of Chinese Academy of Sciences","ror":"https://ror.org/05qbk4x57","country_code":"CN","type":"education","lineage":["https://openalex.org/I19820366","https://openalex.org/I4210165038"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yupeng Tuo","raw_affiliation_strings":["School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China"],"affiliations":[{"raw_affiliation_string":"School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China","institution_ids":["https://openalex.org/I4210165038"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5078392389","display_name":"Xiaochun Yun","orcid":null},"institutions":[{"id":"https://openalex.org/I19820366","display_name":"Chinese Academy of Sciences","ror":"https://ror.org/034t30j35","country_code":"CN","type":"government","lineage":["https://openalex.org/I19820366"]},{"id":"https://openalex.org/I4210156404","display_name":"Institute of Information Engineering","ror":"https://ror.org/04r53se39","country_code":"CN","type":"facility","lineage":["https://openalex.org/I19820366","https://openalex.org/I4210156404"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiaochun Yun","raw_affiliation_strings":["Chinese Academy of Sciences, Institute of Information Engineering, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Chinese Academy of Sciences, Institute of Information Engineering, Beijing, China","institution_ids":["https://openalex.org/I19820366","https://openalex.org/I4210156404"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100715816","display_name":"Yongzheng Zhang","orcid":null},"institutions":[{"id":"https://openalex.org/I4210165038","display_name":"University of Chinese Academy of Sciences","ror":"https://ror.org/05qbk4x57","country_code":"CN","type":"education","lineage":["https://openalex.org/I19820366","https://openalex.org/I4210165038"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yongzheng Zhang","raw_affiliation_strings":["School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China"],"affiliations":[{"raw_affiliation_string":"School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China","institution_ids":["https://openalex.org/I4210165038"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":1,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":64,"max":71},"biblio":{"volume":"27","issue":null,"first_page":"283","last_page":"291"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11980","display_name":"Understanding Human Mobility Patterns","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11980","display_name":"Understanding Human Mobility Patterns","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11106","display_name":"Trajectory Data Mining and Analysis","score":0.99,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10757","display_name":"Volunteered Geographic Information and Geospatial Crowdsourcing","score":0.9891,"subfield":{"id":"https://openalex.org/subfields/3305","display_name":"Geography, Planning and Development"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/location-based-data","display_name":"Location-Based Data","score":0.618827},{"id":"https://openalex.org/keywords/location-prediction","display_name":"Location Prediction","score":0.576853},{"id":"https://openalex.org/keywords/mobile-phone-data","display_name":"Mobile Phone Data","score":0.548243},{"id":"https://openalex.org/keywords/social-sensing","display_name":"Social Sensing","score":0.530208},{"id":"https://openalex.org/keywords/clustering-algorithms","display_name":"Clustering Algorithms","score":0.527001}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.83314925},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.62776244},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.6165546},{"id":"https://openalex.org/C52001869","wikidata":"https://www.wikidata.org/wiki/Q812530","display_name":"Naive Bayes classifier","level":3,"score":0.6086751},{"id":"https://openalex.org/C81669768","wikidata":"https://www.wikidata.org/wiki/Q2359161","display_name":"Precision and recall","level":2,"score":0.57378966},{"id":"https://openalex.org/C184337299","wikidata":"https://www.wikidata.org/wiki/Q1437428","display_name":"Semantics (computer science)","level":2,"score":0.50325507},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.45634258},{"id":"https://openalex.org/C153646914","wikidata":"https://www.wikidata.org/wiki/Q535695","display_name":"Cellular network","level":2,"score":0.4528093},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.37382427},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.34780878},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/dsc.2017.81","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.41,"id":"https://metadata.un.org/sdg/9","display_name":"Industry, innovation and infrastructure"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":20,"referenced_works":["https://openalex.org/W1809720746","https://openalex.org/W1982300822","https://openalex.org/W1987228002","https://openalex.org/W2003489401","https://openalex.org/W2009155608","https://openalex.org/W2020405099","https://openalex.org/W2071049788","https://openalex.org/W2075190119","https://openalex.org/W2108335620","https://openalex.org/W2112737587","https://openalex.org/W2114797768","https://openalex.org/W2115639613","https://openalex.org/W2126834072","https://openalex.org/W2138198492","https://openalex.org/W2138460198","https://openalex.org/W2148959739","https://openalex.org/W2157521848","https://openalex.org/W2162810918","https://openalex.org/W2785547194","https://openalex.org/W4289813018"],"related_works":["https://openalex.org/W4385770464","https://openalex.org/W4317422759","https://openalex.org/W4224262160","https://openalex.org/W4220802396","https://openalex.org/W2726838704","https://openalex.org/W2394466068","https://openalex.org/W2393473353","https://openalex.org/W2373790322","https://openalex.org/W2171665309","https://openalex.org/W1987683558"],"abstract_inverted_index":{"With":[0],"the":[1,51,69,95,120,161,165,188],"development":[2],"of":[3,38,144,171],"mobile":[4,7],"communication":[5],"technology,":[6],"phones":[8],"play":[9],"a":[10,35,81,107,114,197],"more":[11,150,178],"important":[12,26,121,146],"role":[13],"in":[14,50],"people's":[15],"daily":[16],"life.":[17],"The":[18,54,138],"user's":[19],"location":[20,122],"and":[21,32,124,129,141,168,195],"its":[22],"semantic":[23,125,172],"are":[24,63,154,174],"very":[25],"to":[27,46,84,118,184],"Location":[28],"Based":[29],"Services":[30],"(LBS),":[31],"this":[33,76],"inspires":[34],"tremendous":[36],"amount":[37],"research":[39],"effort":[40],"on":[41,71,88,132],"analyzing":[42],"large-scale":[43],"trajectory":[44],"data":[45],"mine":[47,85],"these":[48],"informations":[49],"last":[52],"decade.":[53],"existing":[55,162],"researches":[56],"have":[57,148],"achieved":[58],"good":[59,198],"results,":[60],"but":[61],"there":[62],"still":[64],"some":[65],"challenges,":[66],"such":[67],"as":[68],"limitation":[70],"low":[72,185],"quality":[73,186],"data.":[74,103],"In":[75],"paper,":[77],"firstly,":[78],"we":[79,105],"propose":[80],"novel":[82],"algorithm":[83],"meaningful":[86],"points":[87],"cellular":[89],"network":[90],"data,":[91,187],"which":[92,153],"can":[93],"reduce":[94],"processing":[96],"time":[97],"apparently":[98],"by":[99,156,177],"conditional":[100],"filtering":[101],"original":[102],"Then,":[104],"adopt":[106],"density":[108],"based":[109],"clustering":[110],"method":[111],"together":[112],"with":[113,160],"naive":[115],"Bayes":[116],"classifier":[117],"complete":[119],"discovery":[123],"analysis.":[126],"Theoretical":[127],"analysis":[128,173],"extensive":[130],"experiments":[131],"real":[133],"dataset":[134],"show":[135],"that:":[136],"1)":[137],"precision":[139,166],"rate":[140,143,167,170],"recall":[142,169],"identifying":[145],"locations":[147],"reached":[149],"than":[151,179],"96%,":[152],"improved":[155],"nearly":[157],"3%":[158],"comparing":[159],"algorithms.":[163],"Meanwhile,":[164],"also":[175,192],"increased":[176],"4%.":[180],"2)":[181],"When":[182],"applying":[183],"proposed":[189],"approach":[190],"is":[191],"robust,":[193],"efficient":[194],"has":[196],"performance.":[199]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2743619817","counts_by_year":[{"year":2019,"cited_by_count":1}],"updated_date":"2024-10-11T19:17:19.050748","created_date":"2017-08-17"}