{"id":"https://openalex.org/W4292794033","doi":"https://doi.org/10.1109/cvprw56347.2022.00446","title":"Self-Supervised Learning of Pose-Informed Latents","display_name":"Self-Supervised Learning of Pose-Informed Latents","publication_year":2022,"publication_date":"2022-06-01","ids":{"openalex":"https://openalex.org/W4292794033","doi":"https://doi.org/10.1109/cvprw56347.2022.00446"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvprw56347.2022.00446","pdf_url":null,"source":{"id":"https://openalex.org/S4363607748","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5058529438","display_name":"Raphael Jean","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Raphael Jean","raw_affiliation_strings":["Menya Solutions, Mila"],"affiliations":[{"raw_affiliation_string":"Menya Solutions, Mila","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5007938204","display_name":"Pierre-Luc St-Charles","orcid":"https://orcid.org/0000-0001-7761-2839"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Pierre-Luc St-Charles","raw_affiliation_strings":["Mila, AMLRT"],"affiliations":[{"raw_affiliation_string":"Mila, AMLRT","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5022418359","display_name":"S\u00f6ren Pirk","orcid":"https://orcid.org/0000-0003-1937-9797"},"institutions":[{"id":"https://openalex.org/I1291425158","display_name":"Google (United States)","ror":"https://ror.org/00njsd438","country_code":"US","type":"company","lineage":["https://openalex.org/I1291425158","https://openalex.org/I4210128969"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Soren Pirk","raw_affiliation_strings":["Google Research"],"affiliations":[{"raw_affiliation_string":"Google Research","institution_ids":["https://openalex.org/I1291425158"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5088988384","display_name":"Simon Brodeur","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Simon Brodeur","raw_affiliation_strings":["Menya Solutions, Mila"],"affiliations":[{"raw_affiliation_string":"Menya Solutions, Mila","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":61},"biblio":{"volume":null,"issue":null,"first_page":"4006","last_page":"4015"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Advances in Transfer Learning and Domain Adaptation","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Advances in Transfer Learning and Domain Adaptation","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10812","display_name":"Human Action Recognition and Pose Estimation","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11714","display_name":"Visual Question Answering in Images and Videos","score":0.998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/semi-supervised-learning","display_name":"Semi-Supervised Learning","score":0.612779},{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.601687},{"id":"https://openalex.org/keywords/pose-estimation","display_name":"Pose Estimation","score":0.590397},{"id":"https://openalex.org/keywords/representation-learning","display_name":"Representation Learning","score":0.58327},{"id":"https://openalex.org/keywords/unsupervised-learning","display_name":"Unsupervised Learning","score":0.579595},{"id":"https://openalex.org/keywords/transfer-learning","display_name":"Transfer Learning","score":0.536134},{"id":"https://openalex.org/keywords/identification","display_name":"Identification (biology)","score":0.48337406},{"id":"https://openalex.org/keywords/supervised-learning","display_name":"Supervised learning","score":0.4703296}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8001466},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7703371},{"id":"https://openalex.org/C2781238097","wikidata":"https://www.wikidata.org/wiki/Q175026","display_name":"Object (grammar)","level":2,"score":0.64197993},{"id":"https://openalex.org/C52102323","wikidata":"https://www.wikidata.org/wiki/Q1671968","display_name":"Pose","level":2,"score":0.6078423},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.601687},{"id":"https://openalex.org/C192209626","wikidata":"https://www.wikidata.org/wiki/Q190909","display_name":"Focus (optics)","level":2,"score":0.58381915},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5417588},{"id":"https://openalex.org/C116834253","wikidata":"https://www.wikidata.org/wiki/Q2039217","display_name":"Identification (biology)","level":2,"score":0.48337406},{"id":"https://openalex.org/C126042441","wikidata":"https://www.wikidata.org/wiki/Q1324888","display_name":"Frame (networking)","level":2,"score":0.48295015},{"id":"https://openalex.org/C136389625","wikidata":"https://www.wikidata.org/wiki/Q334384","display_name":"Supervised learning","level":3,"score":0.4703296},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3801817},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.33813965},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.2736292},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C59822182","wikidata":"https://www.wikidata.org/wiki/Q441","display_name":"Botany","level":1,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvprw56347.2022.00446","pdf_url":null,"source":{"id":"https://openalex.org/S4363607748","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":47,"referenced_works":["https://openalex.org/W2108598243","https://openalex.org/W2144796873","https://openalex.org/W2194775991","https://openalex.org/W2321533354","https://openalex.org/W24089286","https://openalex.org/W2422305492","https://openalex.org/W2524365899","https://openalex.org/W2580726517","https://openalex.org/W2769112066","https://openalex.org/W2785325870","https://openalex.org/W2948242301","https://openalex.org/W2950180292","https://openalex.org/W2951292523","https://openalex.org/W2963188159","https://openalex.org/W2989731761","https://openalex.org/W2990873191","https://openalex.org/W2997907976","https://openalex.org/W3005680577","https://openalex.org/W3008526508","https://openalex.org/W3009086056","https://openalex.org/W3010874390","https://openalex.org/W3026092005","https://openalex.org/W3035060554","https://openalex.org/W3035524453","https://openalex.org/W3036224891","https://openalex.org/W3046208551","https://openalex.org/W3048911294","https://openalex.org/W3089768235","https://openalex.org/W3089824566","https://openalex.org/W3093274308","https://openalex.org/W3094454579","https://openalex.org/W3096804376","https://openalex.org/W3100859887","https://openalex.org/W3110190397","https://openalex.org/W3115964123","https://openalex.org/W3118062200","https://openalex.org/W3119909708","https://openalex.org/W3123599388","https://openalex.org/W3135715136","https://openalex.org/W3145385912","https://openalex.org/W3171007011","https://openalex.org/W3180720907","https://openalex.org/W4287591152","https://openalex.org/W4287812705","https://openalex.org/W4297808394","https://openalex.org/W4321153870","https://openalex.org/W62794737"],"related_works":["https://openalex.org/W4387968151","https://openalex.org/W4387967917","https://openalex.org/W4386925306","https://openalex.org/W4299867837","https://openalex.org/W3132124459","https://openalex.org/W3127959533","https://openalex.org/W3110557940","https://openalex.org/W2946083937","https://openalex.org/W2894986065","https://openalex.org/W2123263858"],"abstract_inverted_index":{"Siamese":[0,66],"network":[1],"architectures":[2],"trained":[3,71],"for":[4,49,92],"self-supervised":[5,41],"instance":[6],"recognition":[7],"can":[8,68],"learn":[9,129],"powerful":[10,112],"visual":[11],"representations":[12,26,130],"that":[13,64,85,97],"are":[14],"useful":[15],"in":[16],"various":[17],"tasks.":[18],"Many":[19],"such":[20,53],"approaches":[21],"maximize":[22],"the":[23,31,99,116,123],"similarity":[24],"between":[25],"of":[27,30,106,118,151],"augmented":[28],"images":[29],"same":[32],"object.":[33],"In":[34],"this":[35,119],"paper,":[36],"we":[37,95,121,143],"depart":[38],"from":[39,75],"traditional":[40],"learning":[42],"benchmarks":[43],"by":[44,102],"defining":[45],"a":[46,107,149],"novel":[47],"methodology":[48],"new":[50,89],"challenging":[51],"tasks":[52],"as":[54],"zero":[55],"shot":[56],"pose":[57,135],"estimation.":[58],"Our":[59],"goal":[60],"is":[61],"to":[62,78,110,128],"show":[63,115],"common":[65],"networks":[67],"effectively":[69],"be":[70],"on":[72,87,134],"frame":[73],"pairs":[74],"video":[76,108],"sequences":[77],"generate":[79],"pose-informed":[80],"representations.":[81,113],"Unlike":[82],"parallel":[83],"efforts":[84],"focus":[86],"introducing":[88],"image-space":[90],"operators":[91],"data":[93],"augmentation,":[94],"argue":[96],"extending":[98],"augmentation":[100],"strategy":[101],"using":[103],"different":[104],"frames":[105],"leads":[109],"more":[111],"To":[114],"effectiveness":[117],"approach,":[120],"use":[122],"Objectron":[124],"and":[125,131,139],"UCF101":[126],"datasets":[127],"evaluate":[132],"them":[133],"estimation,":[136],"action":[137],"recognition,":[138],"object":[140],"re-identification.":[141],"Furthermore,":[142],"carefully":[144],"validate":[145],"our":[146],"method":[147],"against":[148],"number":[150],"baselines.":[152]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4292794033","counts_by_year":[],"updated_date":"2024-10-26T13:24:16.728472","created_date":"2022-08-23"}