iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1109/CVPRW50498.2020.00439
{"id":"https://openalex.org/W3037659415","doi":"https://doi.org/10.1109/cvprw50498.2020.00439","title":"Infinitesimal Drift Diffeomorphometry Models for Population Shape Analysis","display_name":"Infinitesimal Drift Diffeomorphometry Models for Population Shape Analysis","publication_year":2020,"publication_date":"2020-06-01","ids":{"openalex":"https://openalex.org/W3037659415","doi":"https://doi.org/10.1109/cvprw50498.2020.00439","mag":"3037659415"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvprw50498.2020.00439","pdf_url":null,"source":{"id":"https://openalex.org/S4363607748","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101966554","display_name":"Brian C. Lee","orcid":"https://orcid.org/0000-0002-1849-5801"},"institutions":[{"id":"https://openalex.org/I145311948","display_name":"Johns Hopkins University","ror":"https://ror.org/00za53h95","country_code":"US","type":"education","lineage":["https://openalex.org/I145311948"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Brian C. Lee","raw_affiliation_strings":["Johns Hopkins University, Baltimore, MD, USA"],"affiliations":[{"raw_affiliation_string":"Johns Hopkins University, Baltimore, MD, USA","institution_ids":["https://openalex.org/I145311948"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5082725826","display_name":"Daniel J. Tward","orcid":"https://orcid.org/0000-0002-4607-6807"},"institutions":[{"id":"https://openalex.org/I145311948","display_name":"Johns Hopkins University","ror":"https://ror.org/00za53h95","country_code":"US","type":"education","lineage":["https://openalex.org/I145311948"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Daniel J. Tward","raw_affiliation_strings":["Johns Hopkins University, Baltimore, MD, USA"],"affiliations":[{"raw_affiliation_string":"Johns Hopkins University, Baltimore, MD, USA","institution_ids":["https://openalex.org/I145311948"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102208455","display_name":"Zhiyi Hu","orcid":null},"institutions":[{"id":"https://openalex.org/I145311948","display_name":"Johns Hopkins University","ror":"https://ror.org/00za53h95","country_code":"US","type":"education","lineage":["https://openalex.org/I145311948"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Zhiyi Hu","raw_affiliation_strings":["Johns Hopkins University, Baltimore, MD, USA"],"affiliations":[{"raw_affiliation_string":"Johns Hopkins University, Baltimore, MD, USA","institution_ids":["https://openalex.org/I145311948"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5040982399","display_name":"Alain Trouv\u00e9","orcid":"https://orcid.org/0000-0002-8298-5995"},"institutions":[{"id":"https://openalex.org/I277688954","display_name":"Universit\u00e9 Paris-Saclay","ror":"https://ror.org/03xjwb503","country_code":"FR","type":"education","lineage":["https://openalex.org/I277688954"]},{"id":"https://openalex.org/I1294671590","display_name":"Centre National de la Recherche Scientifique","ror":"https://ror.org/02feahw73","country_code":"FR","type":"government","lineage":["https://openalex.org/I1294671590"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Alain Trouve","raw_affiliation_strings":["Universit\u00e9 Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, Cachan, France"],"affiliations":[{"raw_affiliation_string":"Universit\u00e9 Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, Cachan, France","institution_ids":["https://openalex.org/I277688954","https://openalex.org/I1294671590"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5033151214","display_name":"Michael I. Miller","orcid":"https://orcid.org/0000-0003-4689-3855"},"institutions":[{"id":"https://openalex.org/I145311948","display_name":"Johns Hopkins University","ror":"https://ror.org/00za53h95","country_code":"US","type":"education","lineage":["https://openalex.org/I145311948"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Michael I. Miller","raw_affiliation_strings":["Johns Hopkins University, Baltimore, MD, USA"],"affiliations":[{"raw_affiliation_string":"Johns Hopkins University, Baltimore, MD, USA","institution_ids":["https://openalex.org/I145311948"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.588,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.775,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":74,"max":77},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12417","display_name":"Geometric Morphometrics and Statistical Analysis","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/2608","display_name":"Geometry and Topology"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12417","display_name":"Geometric Morphometrics and Statistical Analysis","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/2608","display_name":"Geometry and Topology"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11304","display_name":"Diffusion Magnetic Resonance Imaging","score":0.9943,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10052","display_name":"Image Segmentation Techniques","score":0.972,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/shape-variation","display_name":"Shape Variation","score":0.533318},{"id":"https://openalex.org/keywords/axonal-tracking","display_name":"Axonal Tracking","score":0.507479}],"concepts":[{"id":"https://openalex.org/C2908647359","wikidata":"https://www.wikidata.org/wiki/Q2625603","display_name":"Population","level":2,"score":0.6159317},{"id":"https://openalex.org/C165818556","wikidata":"https://www.wikidata.org/wiki/Q213488","display_name":"Geodesic","level":2,"score":0.562291},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.56054187},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.543696},{"id":"https://openalex.org/C91229774","wikidata":"https://www.wikidata.org/wiki/Q193885","display_name":"Infinitesimal","level":2,"score":0.49035716},{"id":"https://openalex.org/C38349280","wikidata":"https://www.wikidata.org/wiki/Q1434290","display_name":"Flow (mathematics)","level":2,"score":0.42565817},{"id":"https://openalex.org/C8272713","wikidata":"https://www.wikidata.org/wiki/Q176737","display_name":"Stochastic process","level":2,"score":0.41216433},{"id":"https://openalex.org/C13662910","wikidata":"https://www.wikidata.org/wiki/Q193139","display_name":"Trajectory","level":2,"score":0.41083062},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.4105047},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.38494104},{"id":"https://openalex.org/C121864883","wikidata":"https://www.wikidata.org/wiki/Q677916","display_name":"Statistical physics","level":1,"score":0.37142137},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.35646546},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.22258908},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.18671334},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.18290493},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.11704886},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.099525005},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C149923435","wikidata":"https://www.wikidata.org/wiki/Q37732","display_name":"Demography","level":1,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0},{"id":"https://openalex.org/C1276947","wikidata":"https://www.wikidata.org/wiki/Q333","display_name":"Astronomy","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvprw50498.2020.00439","pdf_url":null,"source":{"id":"https://openalex.org/S4363607748","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":47,"referenced_works":["https://openalex.org/W101573882","https://openalex.org/W1503893179","https://openalex.org/W1507084921","https://openalex.org/W1543220894","https://openalex.org/W1555683961","https://openalex.org/W1587794659","https://openalex.org/W1900532561","https://openalex.org/W1966812932","https://openalex.org/W1976154578","https://openalex.org/W1984232229","https://openalex.org/W1992252533","https://openalex.org/W1992992703","https://openalex.org/W2003434579","https://openalex.org/W2005972070","https://openalex.org/W2006302620","https://openalex.org/W2008022914","https://openalex.org/W2010584937","https://openalex.org/W2014638390","https://openalex.org/W2018490621","https://openalex.org/W2020999234","https://openalex.org/W2030669466","https://openalex.org/W2034570192","https://openalex.org/W2043446004","https://openalex.org/W2049114803","https://openalex.org/W2053887662","https://openalex.org/W2065340506","https://openalex.org/W2066648187","https://openalex.org/W2076464627","https://openalex.org/W2101051817","https://openalex.org/W2113532276","https://openalex.org/W2114492403","https://openalex.org/W2122328291","https://openalex.org/W2126174118","https://openalex.org/W2132062563","https://openalex.org/W2133661249","https://openalex.org/W2153862949","https://openalex.org/W2156447271","https://openalex.org/W2157502851","https://openalex.org/W2171883843","https://openalex.org/W2291297129","https://openalex.org/W2413241945","https://openalex.org/W2751408003","https://openalex.org/W2901567556","https://openalex.org/W2903950571","https://openalex.org/W2978900376","https://openalex.org/W2981697331","https://openalex.org/W3102880079"],"related_works":["https://openalex.org/W2951274008","https://openalex.org/W2385510272","https://openalex.org/W2385204246","https://openalex.org/W2370818987","https://openalex.org/W2370598571","https://openalex.org/W2361379965","https://openalex.org/W2355499472","https://openalex.org/W2350226651","https://openalex.org/W2349230259","https://openalex.org/W2348667803"],"abstract_inverted_index":{"Describing":[0],"longitudinal":[1,45],"morphometric":[2],"differences":[3,47],"between":[4],"populations":[5],"and":[6,89],"individuals":[7],"is":[8,102,155,168],"a":[9,61,87,149,169,198],"critical":[10],"task":[11],"in":[12,163],"computational":[13,24],"anatomy.":[14],"In":[15,56],"the":[16,19,31,66,79,83,93,114,118,125,142,146,165,173,180,184,202],"context":[17],"of":[18,23,30,33,68,73,78,86,117,124,141,148,179,189,201],"random":[20],"orbit":[21],"model":[22,154,191],"anatomy,":[25],"this":[26,57],"often":[27],"implies":[28],"study":[29],"variation":[32],"individual":[34,69,101,109],"shape":[35],"trajectories":[36],"associated":[37,108],"to":[38,129],"some":[39],"mean":[40,84,150],"field,":[41],"as":[42,44,48,113],"well":[43],"morphological":[46],"encoded":[49],"by":[50,105,157],"similar":[51],"subjects":[52,70],"from":[53,71,160,197],"representative":[54],"populations.":[55],"paper,":[58],"we":[59],"present":[60,187],"new":[62,153],"method":[63],"for":[64,133,138],"computing":[65],"deviation":[67,144],"models":[72,159],"flow.":[74,99,119],"We":[75,120,186],"demonstrate":[76],"estimation":[77],"infinitesimal":[80,181],"drift":[81,110,182],"representing":[82,172,183],"flow":[85],"population":[88,200],"its":[90],"entrance":[91],"into":[92],"Eulerian":[94],"vector":[95],"field":[96],"controlling":[97],"that":[98],"Each":[100],"studied":[103],"longitudinally":[104],"modeling":[106],"another":[107],"which":[111,164],"acts":[112],"personalized":[115,166],"control":[116,167],"provide":[121],"an":[122],"augmentation":[123],"classic":[126],"LDDMM":[127],"equations":[128],"generate":[130],"\"biased":[131],"geodesics\"":[132],"trajectory":[134],"shooting":[135],"algorithms,":[136],"allowing":[137],"direct":[139],"computation":[140],"individual's":[143],"under":[145],"influence":[147],"drift.":[151],"Our":[152],"inspired":[156],"diffusion":[158],"stochastic":[161],"processes":[162],"non-stochastic":[170],"term":[171],"additive":[174],"Brownian":[175],"component":[176],"on":[177,192],"top":[178],"population.":[185],"results":[188],"our":[190],"entorhinal":[193],"cortical":[194],"surfaces":[195],"extracted":[196],"patient":[199],"Alzheimer's":[203],"Disease":[204],"Neuroimaging":[205],"Initiative.":[206]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3037659415","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":1}],"updated_date":"2024-11-27T14:01:20.970070","created_date":"2020-07-02"}