{"id":"https://openalex.org/W3036653218","doi":"https://doi.org/10.1109/cvprw50498.2020.00388","title":"P2L: Predicting Transfer Learning for Images and Semantic Relations","display_name":"P2L: Predicting Transfer Learning for Images and Semantic Relations","publication_year":2020,"publication_date":"2020-06-01","ids":{"openalex":"https://openalex.org/W3036653218","doi":"https://doi.org/10.1109/cvprw50498.2020.00388","mag":"3036653218"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvprw50498.2020.00388","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/1908.07630","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5069125151","display_name":"Bishwaranjan Bhattacharjee","orcid":"https://orcid.org/0009-0009-7097-4891"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bishwaranjan Bhattacharjee","raw_affiliation_strings":["IBM T.J. Watson Research Center"],"affiliations":[{"raw_affiliation_string":"IBM T.J. Watson Research Center","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5085029710","display_name":"John R. Render","orcid":null},"institutions":[{"id":"https://openalex.org/I78577930","display_name":"Columbia University","ror":"https://ror.org/00hj8s172","country_code":"US","type":"education","lineage":["https://openalex.org/I78577930"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"John R. Render","raw_affiliation_strings":["Columbia University"],"affiliations":[{"raw_affiliation_string":"Columbia University","institution_ids":["https://openalex.org/I78577930"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5110687485","display_name":"Matthew Hill","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Matthew Hill","raw_affiliation_strings":["IBM T.J. Watson Research Center"],"affiliations":[{"raw_affiliation_string":"IBM T.J. Watson Research Center","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5110042006","display_name":"Parijat Dube","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Parijat Dube","raw_affiliation_strings":["IBM T.J. Watson Research Center"],"affiliations":[{"raw_affiliation_string":"IBM T.J. Watson Research Center","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5063213638","display_name":"Siyu Huo","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Siyu Huo","raw_affiliation_strings":["IBM T.J. Watson Research Center"],"affiliations":[{"raw_affiliation_string":"IBM T.J. Watson Research Center","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5079135719","display_name":"Michael Gla\u00df","orcid":"https://orcid.org/0000-0002-8006-8843"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Michael R. Glass","raw_affiliation_strings":["IBM T.J. Watson Research Center"],"affiliations":[{"raw_affiliation_string":"IBM T.J. Watson Research Center","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5021326990","display_name":"Brian Belgodere","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Brian Belgodere","raw_affiliation_strings":["IBM T.J. Watson Research Center"],"affiliations":[{"raw_affiliation_string":"IBM T.J. Watson Research Center","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5078542580","display_name":"Sharath Pankanti","orcid":"https://orcid.org/0000-0001-6770-9899"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sharath Pankanti","raw_affiliation_strings":["IBM T.J. Watson Research Center"],"affiliations":[{"raw_affiliation_string":"IBM T.J. Watson Research Center","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5079673164","display_name":"Noel Codella","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Noel Codella","raw_affiliation_strings":["IBM T.J. Watson Research Center"],"affiliations":[{"raw_affiliation_string":"IBM T.J. Watson Research Center","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5054665407","display_name":"Patrick Watson","orcid":"https://orcid.org/0000-0002-6420-3101"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Patrick Watson","raw_affiliation_strings":["Minerva Project"],"affiliations":[{"raw_affiliation_string":"Minerva Project","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.652,"has_fulltext":false,"cited_by_count":10,"citation_normalized_percentile":{"value":0.839389,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":86,"max":87},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Advances in Transfer Learning and Domain Adaptation","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Advances in Transfer Learning and Domain Adaptation","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11714","display_name":"Visual Question Answering in Images and Videos","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Image Feature Retrieval and Recognition Techniques","score":0.9563,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/transfer-of-learning","display_name":"Transfer of learning","score":0.7986825},{"id":"https://openalex.org/keywords/transfer-learning","display_name":"Transfer Learning","score":0.673271},{"id":"https://openalex.org/keywords/representation-learning","display_name":"Representation Learning","score":0.597515},{"id":"https://openalex.org/keywords/meta-learning","display_name":"Meta-Learning","score":0.563738},{"id":"https://openalex.org/keywords/semi-supervised-learning","display_name":"Semi-Supervised Learning","score":0.548115},{"id":"https://openalex.org/keywords/few-shot-learning","display_name":"Few-Shot Learning","score":0.543564},{"id":"https://openalex.org/keywords/negative-transfer","display_name":"Negative transfer","score":0.44686642},{"id":"https://openalex.org/keywords/variation","display_name":"Variation (astronomy)","score":0.42610005},{"id":"https://openalex.org/keywords/baseline","display_name":"Baseline (sea)","score":0.41766554}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8116363},{"id":"https://openalex.org/C150899416","wikidata":"https://www.wikidata.org/wiki/Q1820378","display_name":"Transfer of learning","level":2,"score":0.7986825},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.728084},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.6209045},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5828876},{"id":"https://openalex.org/C173801870","wikidata":"https://www.wikidata.org/wiki/Q201413","display_name":"Heuristic","level":2,"score":0.5103242},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.4713884},{"id":"https://openalex.org/C2780009758","wikidata":"https://www.wikidata.org/wiki/Q6804172","display_name":"Measure (data warehouse)","level":2,"score":0.4492178},{"id":"https://openalex.org/C2779178101","wikidata":"https://www.wikidata.org/wiki/Q6987274","display_name":"Negative transfer","level":3,"score":0.44686642},{"id":"https://openalex.org/C2778334786","wikidata":"https://www.wikidata.org/wiki/Q1586270","display_name":"Variation (astronomy)","level":2,"score":0.42610005},{"id":"https://openalex.org/C12725497","wikidata":"https://www.wikidata.org/wiki/Q810247","display_name":"Baseline (sea)","level":2,"score":0.41766554},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.37453532},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.35273987},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.23635834},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.08670387},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C111368507","wikidata":"https://www.wikidata.org/wiki/Q43518","display_name":"Oceanography","level":1,"score":0.0},{"id":"https://openalex.org/C44870925","wikidata":"https://www.wikidata.org/wiki/Q37547","display_name":"Astrophysics","level":1,"score":0.0},{"id":"https://openalex.org/C171041071","wikidata":"https://www.wikidata.org/wiki/Q36870","display_name":"First language","level":2,"score":0.0},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvprw50498.2020.00388","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1908.07630","pdf_url":"https://arxiv.org/pdf/1908.07630","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1908.07630","pdf_url":"https://arxiv.org/pdf/1908.07630","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/4","display_name":"Quality education","score":0.7}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":36,"referenced_works":["https://openalex.org/W102708294","https://openalex.org/W1797268635","https://openalex.org/W181016146","https://openalex.org/W1972420097","https://openalex.org/W2045416664","https://openalex.org/W2052293776","https://openalex.org/W2062118960","https://openalex.org/W2091118421","https://openalex.org/W2108598243","https://openalex.org/W2117539524","https://openalex.org/W2122838776","https://openalex.org/W2134670479","https://openalex.org/W2138011018","https://openalex.org/W2152917747","https://openalex.org/W2165698076","https://openalex.org/W2203224402","https://openalex.org/W2251135946","https://openalex.org/W2395579298","https://openalex.org/W2517038008","https://openalex.org/W2533598788","https://openalex.org/W2591924527","https://openalex.org/W2604763608","https://openalex.org/W2751531187","https://openalex.org/W2775461895","https://openalex.org/W2804452283","https://openalex.org/W2805381747","https://openalex.org/W2963336383","https://openalex.org/W2964125718","https://openalex.org/W2964185501","https://openalex.org/W2964332173","https://openalex.org/W2964745622","https://openalex.org/W2990761674","https://openalex.org/W3035219538","https://openalex.org/W4255421341","https://openalex.org/W4297754112","https://openalex.org/W4299518610"],"related_works":["https://openalex.org/W2952841984","https://openalex.org/W2913146933","https://openalex.org/W2619137770","https://openalex.org/W2398668521","https://openalex.org/W2386430105","https://openalex.org/W2383111961","https://openalex.org/W2380820513","https://openalex.org/W2365952365","https://openalex.org/W2356521405","https://openalex.org/W2352448290"],"abstract_inverted_index":{"We":[0,24,49],"describe":[1],"an":[2,121],"efficient":[3],"method":[4,177],"to":[5,32,39],"accurately":[6],"estimate":[7],"the":[8,34,67,74,82,98,154,159,163],"effectiveness":[9],"of":[10,81,88,90,96,104,153,162],"a":[11,20,46,86,94,108,132],"previously":[12],"trained":[13,134],"deep":[14],"learning":[15,22,77],"model":[16,78,133,139,156],"for":[17,43],"use":[18,25],"in":[19,66,120,124,145],"new":[21],"task.":[23],"this":[26],"method,":[27],"\"Predict":[28],"To":[29],"Learn\"":[30],"(P2L),":[31],"predict":[33],"most":[35],"likely":[36],"\"source\"":[37],"dataset":[38,101,165],"produce":[40],"effective":[41],"transfer":[42,76,147],"training":[44],"on":[45,79],"\"target\"":[47],"dataset.":[48],"validate":[50],"our":[51,117,175],"approach":[52,72],"extensively":[53],"across":[54],"21":[55],"tasks,":[56,83],"including":[57],"image":[58],"classification":[59],"tasks":[60,65],"and":[61,102,113],"semantic":[62],"relationship":[63],"prediction":[64],"linguistic":[68],"domain.":[69],"The":[70],"P2L":[71],"selects":[73],"best":[75],"62%":[80],"compared":[84],"with":[85],"baseline":[87],"48%":[89],"cases":[91,105],"when":[92,106],"using":[93,107],"heuristic":[95],"selecting":[97],"largest":[99],"source":[100,112,138,164],"52%":[103],"distance":[109],"measure":[110],"between":[111],"target":[114,155],"datasets.":[115],"Further,":[116],"work":[118],"results":[119],"8%":[122],"reduction":[123],"error":[125],"rate.":[126],"Finally,":[127],"we":[128,178],"also":[129],"show":[130],"that":[131,151],"from":[135],"merging":[136],"multiple":[137],"datasets":[140],"does":[141],"not":[142],"necessarily":[143],"result":[144],"improved":[146],"learning.":[148],"This":[149],"suggests":[150],"performance":[152],"depends":[157],"upon":[158],"relative":[160],"composition":[161],"as":[166,168,172],"well":[167],"their":[169],"absolute":[170],"scale,":[171],"measured":[173],"by":[174],"novel":[176],"term":[179],"`P2L'.":[180]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3036653218","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":1},{"year":2021,"cited_by_count":3},{"year":2020,"cited_by_count":3}],"updated_date":"2024-11-06T07:07:48.575729","created_date":"2020-06-25"}