iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1109/CVPR46437.2021.00037
{"id":"https://openalex.org/W3167308647","doi":"https://doi.org/10.1109/cvpr46437.2021.00037","title":"OTA: Optimal Transport Assignment for Object Detection","display_name":"OTA: Optimal Transport Assignment for Object Detection","publication_year":2021,"publication_date":"2021-06-01","ids":{"openalex":"https://openalex.org/W3167308647","doi":"https://doi.org/10.1109/cvpr46437.2021.00037","mag":"3167308647"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvpr46437.2021.00037","pdf_url":null,"source":{"id":"https://openalex.org/S4363607701","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2103.14259","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5103095930","display_name":"Zheng Ge","orcid":"https://orcid.org/0000-0001-8770-2555"},"institutions":[{"id":"https://openalex.org/I150744194","display_name":"Waseda University","ror":"https://ror.org/00ntfnx83","country_code":"JP","type":"education","lineage":["https://openalex.org/I150744194"]},{"id":"https://openalex.org/I4210109870","display_name":"Vi Technology (United States)","ror":"https://ror.org/016mnbp44","country_code":"US","type":"company","lineage":["https://openalex.org/I4210109870"]}],"countries":["JP","US"],"is_corresponding":false,"raw_author_name":"Zheng Ge","raw_affiliation_strings":["Megvii Technology","Waseda University"],"affiliations":[{"raw_affiliation_string":"Waseda University","institution_ids":["https://openalex.org/I150744194"]},{"raw_affiliation_string":"Megvii Technology","institution_ids":["https://openalex.org/I4210109870"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100697289","display_name":"Songtao Liu","orcid":"https://orcid.org/0000-0001-9815-3678"},"institutions":[{"id":"https://openalex.org/I4210109870","display_name":"Vi Technology (United States)","ror":"https://ror.org/016mnbp44","country_code":"US","type":"company","lineage":["https://openalex.org/I4210109870"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Songtao Liu","raw_affiliation_strings":["Megvii Technology"],"affiliations":[{"raw_affiliation_string":"Megvii Technology","institution_ids":["https://openalex.org/I4210109870"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5050058710","display_name":"Zeming Li","orcid":"https://orcid.org/0000-0002-5191-8247"},"institutions":[{"id":"https://openalex.org/I4210109870","display_name":"Vi Technology (United States)","ror":"https://ror.org/016mnbp44","country_code":"US","type":"company","lineage":["https://openalex.org/I4210109870"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Zeming Li","raw_affiliation_strings":["Megvii Technology"],"affiliations":[{"raw_affiliation_string":"Megvii Technology","institution_ids":["https://openalex.org/I4210109870"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5057487414","display_name":"Osamu Yoshie","orcid":"https://orcid.org/0000-0002-4192-554X"},"institutions":[{"id":"https://openalex.org/I150744194","display_name":"Waseda University","ror":"https://ror.org/00ntfnx83","country_code":"JP","type":"education","lineage":["https://openalex.org/I150744194"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Osamu Yoshie","raw_affiliation_strings":["Waseda University"],"affiliations":[{"raw_affiliation_string":"Waseda University","institution_ids":["https://openalex.org/I150744194"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100785015","display_name":"Jian Sun","orcid":"https://orcid.org/0000-0002-6178-4166"},"institutions":[{"id":"https://openalex.org/I4210109870","display_name":"Vi Technology (United States)","ror":"https://ror.org/016mnbp44","country_code":"US","type":"company","lineage":["https://openalex.org/I4210109870"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jian Sun","raw_affiliation_strings":["Megvii Technology"],"affiliations":[{"raw_affiliation_string":"Megvii Technology","institution_ids":["https://openalex.org/I4210109870"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":20.623,"has_fulltext":false,"cited_by_count":335,"citation_normalized_percentile":{"value":0.99987,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":99,"max":100},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9971,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/code","display_name":"Code (set theory)","score":0.5151028}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7367203},{"id":"https://openalex.org/C85044808","wikidata":"https://www.wikidata.org/wiki/Q620614","display_name":"Assignment problem","level":2,"score":0.60615087},{"id":"https://openalex.org/C2781238097","wikidata":"https://www.wikidata.org/wiki/Q175026","display_name":"Object (grammar)","level":2,"score":0.590178},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.56068444},{"id":"https://openalex.org/C2776760102","wikidata":"https://www.wikidata.org/wiki/Q5139990","display_name":"Code (set theory)","level":3,"score":0.5151028},{"id":"https://openalex.org/C12713177","wikidata":"https://www.wikidata.org/wiki/Q1900281","display_name":"Perspective (graphical)","level":2,"score":0.4584872},{"id":"https://openalex.org/C2776505523","wikidata":"https://www.wikidata.org/wiki/Q4785468","display_name":"Plan (archaeology)","level":2,"score":0.43352425},{"id":"https://openalex.org/C94915269","wikidata":"https://www.wikidata.org/wiki/Q1834857","display_name":"Detector","level":2,"score":0.4230432},{"id":"https://openalex.org/C43126263","wikidata":"https://www.wikidata.org/wiki/Q128751","display_name":"Source code","level":2,"score":0.41023174},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.3481429},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.27895105},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.16908503},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.14013812},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.07487506},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C166957645","wikidata":"https://www.wikidata.org/wiki/Q23498","display_name":"Archaeology","level":1,"score":0.0},{"id":"https://openalex.org/C95457728","wikidata":"https://www.wikidata.org/wiki/Q309","display_name":"History","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvpr46437.2021.00037","pdf_url":null,"source":{"id":"https://openalex.org/S4363607701","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2103.14259","pdf_url":"https://arxiv.org/pdf/2103.14259","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2103.14259","pdf_url":"https://arxiv.org/pdf/2103.14259","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":63,"referenced_works":["https://openalex.org/W114517082","https://openalex.org/W1536680647","https://openalex.org/W1861492603","https://openalex.org/W2107775979","https://openalex.org/W2108598243","https://openalex.org/W2129987527","https://openalex.org/W2158131535","https://openalex.org/W2194775991","https://openalex.org/W2504335775","https://openalex.org/W2549139847","https://openalex.org/W2565639579","https://openalex.org/W2570343428","https://openalex.org/W2613718673","https://openalex.org/W2796347433","https://openalex.org/W2798542761","https://openalex.org/W2810862788","https://openalex.org/W2934198733","https://openalex.org/W2935837427","https://openalex.org/W2949858991","https://openalex.org/W2953106684","https://openalex.org/W2962721361","https://openalex.org/W2962766617","https://openalex.org/W2963037989","https://openalex.org/W2963150697","https://openalex.org/W2963179609","https://openalex.org/W2963299996","https://openalex.org/W2963351448","https://openalex.org/W2963403868","https://openalex.org/W2963604034","https://openalex.org/W2963769056","https://openalex.org/W2964241181","https://openalex.org/W2966926453","https://openalex.org/W2970575838","https://openalex.org/W2971865660","https://openalex.org/W2982770724","https://openalex.org/W2986357608","https://openalex.org/W2989604896","https://openalex.org/W2991089415","https://openalex.org/W3012573144","https://openalex.org/W3034638324","https://openalex.org/W3035239218","https://openalex.org/W3035396860","https://openalex.org/W3035478146","https://openalex.org/W3035673985","https://openalex.org/W3039009902","https://openalex.org/W3042930119","https://openalex.org/W3096609285","https://openalex.org/W3097651496","https://openalex.org/W3098090606","https://openalex.org/W3101246443","https://openalex.org/W3102701618","https://openalex.org/W3103163741","https://openalex.org/W3106250896","https://openalex.org/W3107473354","https://openalex.org/W3108849448","https://openalex.org/W3109381875","https://openalex.org/W3113065927","https://openalex.org/W3113117059","https://openalex.org/W3120549645","https://openalex.org/W3171162369","https://openalex.org/W3187089511","https://openalex.org/W4293584584","https://openalex.org/W4385245566"],"related_works":["https://openalex.org/W4390618967","https://openalex.org/W4254303342","https://openalex.org/W4205655149","https://openalex.org/W3081644756","https://openalex.org/W2795393339","https://openalex.org/W2626393719","https://openalex.org/W2366906938","https://openalex.org/W2349391998","https://openalex.org/W2074467390","https://openalex.org/W2000775715"],"abstract_inverted_index":{"Recent":[0],"advances":[1],"in":[2,5,51,148],"label":[3,28],"assignment":[4,29,84],"object":[6],"detection":[7],"mainly":[8],"seek":[9],"to":[10,36,88],"independently":[11],"define":[12,56],"positive/negative":[13],"training":[14],"samples":[15],"for":[16],"each":[17,62],"ground-truth":[18],"(gt)":[19,67],"object.":[20],"In":[21],"this":[22],"paper,":[23],"we":[24,55],"innovatively":[25],"revisit":[26],"the":[27,38,57,70,82,90,139],"from":[30],"a":[31,48,107],"global":[32],"perspective":[33],"and":[34,65,76,135],"propose":[35],"formulate":[37],"assigning":[39,128],"procedure":[40],"as":[41,69],"an":[42],"Optimal":[43,113],"Transport":[44,114],"(OT)":[45],"problem":[46],"\u2013":[47],"well-studied":[49],"topic":[50],"Optimization":[52],"Theory.":[53],"Concretely,":[54],"unit":[58],"transportation":[59,96],"cost":[60],"between":[61],"demander":[63],"(anchor)":[64],"supplier":[66],"pair":[68],"weighted":[71],"summation":[72],"of":[73,141],"their":[74],"classification":[75],"regression":[77],"losses.":[78],"After":[79],"formulation,":[80],"finding":[81],"best":[83],"solution":[85],"is":[86,153],"converted":[87],"solve":[89],"optimal":[91],"transport":[92],"plan":[93],"at":[94,155],"minimal":[95],"costs,":[97],"which":[98],"can":[99,117],"be":[100],"solved":[101],"via":[102],"Sinkhorn-Knopp":[103],"Iteration.":[104],"On":[105],"COCO,":[106],"single":[108],"FCOS-ResNet-50":[109],"detector":[110],"equipped":[111],"with":[112],"Assignment":[115],"(OTA)":[116],"reach":[118],"40.7%":[119],"mAP":[120],"under":[121],"1\u00d7":[122],"scheduler,":[123],"outperforming":[124],"all":[125],"other":[126],"existing":[127],"methods.":[129],"Extensive":[130],"experiments":[131],"conducted":[132],"on":[133],"COCO":[134],"CrowdHuman":[136],"further":[137],"validate":[138],"effectiveness":[140],"our":[142],"proposed":[143],"OTA,":[144],"especially":[145],"its":[146],"superiority":[147],"crowd":[149],"scenarios.":[150],"The":[151],"code":[152],"available":[154],"https://github.com/Megvii-BaseDetection/OTA.":[156]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3167308647","counts_by_year":[{"year":2024,"cited_by_count":81},{"year":2023,"cited_by_count":151},{"year":2022,"cited_by_count":81},{"year":2021,"cited_by_count":7}],"updated_date":"2024-12-14T11:40:02.636075","created_date":"2021-06-22"}