{"id":"https://openalex.org/W2741295496","doi":"https://doi.org/10.1109/cvpr.2017.528","title":"Missing Modalities Imputation via Cascaded Residual Autoencoder","display_name":"Missing Modalities Imputation via Cascaded Residual Autoencoder","publication_year":2017,"publication_date":"2017-07-01","ids":{"openalex":"https://openalex.org/W2741295496","doi":"https://doi.org/10.1109/cvpr.2017.528","mag":"2741295496"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvpr.2017.528","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101499997","display_name":"Luan Tran","orcid":"https://orcid.org/0000-0002-7015-6188"},"institutions":[{"id":"https://openalex.org/I87216513","display_name":"Michigan State University","ror":"https://ror.org/05hs6h993","country_code":"US","type":"education","lineage":["https://openalex.org/I87216513"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Luan Tran","raw_affiliation_strings":["Department of Computer Science & Engineering, Michigan State University, East Lansing, MI#TAB#"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science & Engineering, Michigan State University, East Lansing, MI#TAB#","institution_ids":["https://openalex.org/I87216513"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100409027","display_name":"Xiaoming Liu","orcid":"https://orcid.org/0000-0002-0424-629X"},"institutions":[{"id":"https://openalex.org/I87216513","display_name":"Michigan State University","ror":"https://ror.org/05hs6h993","country_code":"US","type":"education","lineage":["https://openalex.org/I87216513"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Xiaoming Liu","raw_affiliation_strings":["Department of Computer Science & Engineering, Michigan State University, East Lansing, MI#TAB#"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science & Engineering, Michigan State University, East Lansing, MI#TAB#","institution_ids":["https://openalex.org/I87216513"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5047215778","display_name":"Jiayu Zhou","orcid":"https://orcid.org/0000-0003-4336-6777"},"institutions":[{"id":"https://openalex.org/I87216513","display_name":"Michigan State University","ror":"https://ror.org/05hs6h993","country_code":"US","type":"education","lineage":["https://openalex.org/I87216513"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jiayu Zhou","raw_affiliation_strings":["Department of Computer Science & Engineering, Michigan State University, East Lansing, MI#TAB#"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science & Engineering, Michigan State University, East Lansing, MI#TAB#","institution_ids":["https://openalex.org/I87216513"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5069394608","display_name":"Rong Jin","orcid":"https://orcid.org/0000-0002-8797-4646"},"institutions":[{"id":"https://openalex.org/I45928872","display_name":"Alibaba Group (China)","ror":"https://ror.org/00k642b80","country_code":"CN","type":"company","lineage":["https://openalex.org/I45928872"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Rong Jin","raw_affiliation_strings":["[Alibaba Group Holding Limited, Hangzhou, Zhejiang, China]"],"affiliations":[{"raw_affiliation_string":"[Alibaba Group Holding Limited, Hangzhou, Zhejiang, China]","institution_ids":["https://openalex.org/I45928872"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":4.268,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":155,"citation_normalized_percentile":{"value":0.907885,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":98,"max":99},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Advances in Transfer Learning and Domain Adaptation","score":0.9961,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Advances in Transfer Learning and Domain Adaptation","score":0.9961,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10326","display_name":"Wireless Indoor Localization Techniques and Systems","score":0.9946,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10500","display_name":"Theory and Applications of Compressed Sensing","score":0.9879,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/modalities","display_name":"Modalities","score":0.8655686},{"id":"https://openalex.org/keywords/imputation","display_name":"Imputation (statistics)","score":0.7536092},{"id":"https://openalex.org/keywords/leverage","display_name":"Leverage (statistics)","score":0.7311919},{"id":"https://openalex.org/keywords/autoencoder","display_name":"Autoencoder","score":0.70418435},{"id":"https://openalex.org/keywords/compressed-sensing","display_name":"Compressed Sensing","score":0.568649},{"id":"https://openalex.org/keywords/dropout","display_name":"Dropout (neural networks)","score":0.5514768},{"id":"https://openalex.org/keywords/representation-learning","display_name":"Representation Learning","score":0.533444},{"id":"https://openalex.org/keywords/transfer-learning","display_name":"Transfer Learning","score":0.508451}],"concepts":[{"id":"https://openalex.org/C2779903281","wikidata":"https://www.wikidata.org/wiki/Q6888026","display_name":"Modalities","level":2,"score":0.8655686},{"id":"https://openalex.org/C9357733","wikidata":"https://www.wikidata.org/wiki/Q6878417","display_name":"Missing data","level":2,"score":0.82765126},{"id":"https://openalex.org/C58041806","wikidata":"https://www.wikidata.org/wiki/Q1660484","display_name":"Imputation (statistics)","level":3,"score":0.7536092},{"id":"https://openalex.org/C153083717","wikidata":"https://www.wikidata.org/wiki/Q6535263","display_name":"Leverage (statistics)","level":2,"score":0.7311919},{"id":"https://openalex.org/C155512373","wikidata":"https://www.wikidata.org/wiki/Q287450","display_name":"Residual","level":2,"score":0.7148011},{"id":"https://openalex.org/C101738243","wikidata":"https://www.wikidata.org/wiki/Q786435","display_name":"Autoencoder","level":3,"score":0.70418435},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.70247006},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6092792},{"id":"https://openalex.org/C2776145597","wikidata":"https://www.wikidata.org/wiki/Q25339462","display_name":"Dropout (neural networks)","level":2,"score":0.5514768},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5236642},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.4529282},{"id":"https://openalex.org/C67186912","wikidata":"https://www.wikidata.org/wiki/Q367664","display_name":"Data modeling","level":2,"score":0.44462413},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4238066},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.367511},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.14194486},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.10393223},{"id":"https://openalex.org/C36289849","wikidata":"https://www.wikidata.org/wiki/Q34749","display_name":"Social science","level":1,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvpr.2017.528","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/8","display_name":"Decent work and economic growth","score":0.42}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":39,"referenced_works":["https://openalex.org/W1497089125","https://openalex.org/W1509472805","https://openalex.org/W1573897183","https://openalex.org/W1584663654","https://openalex.org/W1651266332","https://openalex.org/W1883346539","https://openalex.org/W1964769830","https://openalex.org/W1965309615","https://openalex.org/W2000157792","https://openalex.org/W2001563151","https://openalex.org/W2012010354","https://openalex.org/W2013022059","https://openalex.org/W2025768430","https://openalex.org/W2031007444","https://openalex.org/W2047071281","https://openalex.org/W2050885788","https://openalex.org/W2078019730","https://openalex.org/W2083270190","https://openalex.org/W2085097378","https://openalex.org/W2100495367","https://openalex.org/W2103972604","https://openalex.org/W2111532873","https://openalex.org/W2127199143","https://openalex.org/W2132467081","https://openalex.org/W2142276208","https://openalex.org/W2146130798","https://openalex.org/W2156222070","https://openalex.org/W2158400785","https://openalex.org/W2170946361","https://openalex.org/W2184188583","https://openalex.org/W2194775991","https://openalex.org/W2288989350","https://openalex.org/W2611328865","https://openalex.org/W2912990735","https://openalex.org/W2951617052","https://openalex.org/W3003365835","https://openalex.org/W4213262319","https://openalex.org/W4285719527","https://openalex.org/W4394667808"],"related_works":["https://openalex.org/W4211215373","https://openalex.org/W3179858851","https://openalex.org/W3144172081","https://openalex.org/W3123177881","https://openalex.org/W3028371478","https://openalex.org/W2581984549","https://openalex.org/W2181530120","https://openalex.org/W2081476516","https://openalex.org/W2024529227","https://openalex.org/W1574575415"],"abstract_inverted_index":{"Affordable":[0],"sensors":[1],"lead":[2],"to":[3,21,45,85,106,117],"an":[4],"increasing":[5],"interest":[6],"in":[7,25,29,79],"acquiring":[8],"and":[9,61,125,141],"modeling":[10],"data":[11,47,89,139],"with":[12,48,67],"multiple":[13,17],"modalities.":[14,50,96,109],"Learning":[15],"from":[16],"modalities":[18,66],"has":[19],"shown":[20],"significantly":[22],"improve":[23],"performance":[24,133],"object":[26,143],"recognition.":[27],"However,":[28],"practice":[30],"it":[31],"is":[32],"common":[33],"that":[34],"the":[35,76,80,87,92,119,122,131,138,142],"sensing":[36],"equipment":[37],"experiences":[38],"unforeseeable":[39],"malfunction":[40],"or":[41,70],"configuration":[42],"issues,":[43],"leading":[44],"corrupted":[46,72,81],"missing":[49,59,68,88,108],"Most":[51],"existing":[52],"multi-modal":[53],"learning":[54],"algorithms":[55],"could":[56],"not":[57],"handle":[58],"modalities,":[60],"would":[62],"discard":[63],"either":[64],"all":[65,71],"values":[69],"data.":[73,127,148],"To":[74],"leverage":[75],"valuable":[77],"information":[78],"data,":[82],"we":[83,98],"propose":[84,99],"impute":[86,107],"by":[90],"leveraging":[91],"relatedness":[93],"among":[94],"different":[95],"Specifically,":[97],"a":[100],"novel":[101],"Cascaded":[102],"Residual":[103],"Autoencoder":[104],"(CRA)":[105],"By":[110],"stacking":[111],"residual":[112,120],"autoencoders,":[113],"CRA":[114,135],"grows":[115],"iteratively":[116],"model":[118],"between":[121],"current":[123],"prediction":[124],"original":[126],"Extensive":[128],"experiments":[129],"demonstrate":[130],"superior":[132],"of":[134],"on":[136,146],"both":[137],"imputation":[140],"recognition":[144],"task":[145],"imputed":[147]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2741295496","counts_by_year":[{"year":2024,"cited_by_count":32},{"year":2023,"cited_by_count":24},{"year":2022,"cited_by_count":21},{"year":2021,"cited_by_count":31},{"year":2020,"cited_by_count":22},{"year":2019,"cited_by_count":13},{"year":2018,"cited_by_count":12}],"updated_date":"2024-11-02T05:03:32.155386","created_date":"2017-08-08"}