iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1109/CDC.2016.7799105
{"id":"https://openalex.org/W2963752762","doi":"https://doi.org/10.1109/cdc.2016.7799105","title":"Gain function approximation in the feedback particle filter","display_name":"Gain function approximation in the feedback particle filter","publication_year":2016,"publication_date":"2016-12-01","ids":{"openalex":"https://openalex.org/W2963752762","doi":"https://doi.org/10.1109/cdc.2016.7799105","mag":"2963752762"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cdc.2016.7799105","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/1603.05496","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5035589000","display_name":"Amirhossein Taghvaei","orcid":"https://orcid.org/0000-0002-1536-892X"},"institutions":[{"id":"https://openalex.org/I157725225","display_name":"University of Illinois Urbana-Champaign","ror":"https://ror.org/047426m28","country_code":"US","type":"education","lineage":["https://openalex.org/I157725225"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Amirhossein Taghvaei","raw_affiliation_strings":["Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign (UIUC)"],"affiliations":[{"raw_affiliation_string":"Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign (UIUC)","institution_ids":["https://openalex.org/I157725225"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5081314418","display_name":"Prashant G. Mehta","orcid":"https://orcid.org/0000-0003-1265-7942"},"institutions":[{"id":"https://openalex.org/I157725225","display_name":"University of Illinois Urbana-Champaign","ror":"https://ror.org/047426m28","country_code":"US","type":"education","lineage":["https://openalex.org/I157725225"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Prashant G. Mehta","raw_affiliation_strings":["Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign (UIUC)"],"affiliations":[{"raw_affiliation_string":"Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign (UIUC)","institution_ids":["https://openalex.org/I157725225"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.547,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":28,"citation_normalized_percentile":{"value":0.871233,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":"348","issue":null,"first_page":"5446","last_page":"5452"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10928","display_name":"Uncertainty Quantification and Sensitivity Analysis","score":0.994,"subfield":{"id":"https://openalex.org/subfields/1804","display_name":"Statistics, Probability and Uncertainty"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T10928","display_name":"Uncertainty Quantification and Sensitivity Analysis","score":0.994,"subfield":{"id":"https://openalex.org/subfields/1804","display_name":"Statistics, Probability and Uncertainty"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10894","display_name":"Groundwater Flow and Transport Modeling","score":0.9905,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10711","display_name":"Particle Filtering and Nonlinear Estimation Methods","score":0.9852,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/gaussian-filters","display_name":"Gaussian Filters","score":0.551731},{"id":"https://openalex.org/keywords/particle-filters","display_name":"Particle Filters","score":0.509561},{"id":"https://openalex.org/keywords/nonlinear-estimation","display_name":"Nonlinear Estimation","score":0.505082},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.464091},{"id":"https://openalex.org/keywords/function-approximation","display_name":"Function approximation","score":0.42759955},{"id":"https://openalex.org/keywords/approximation-theory","display_name":"Approximation theory","score":0.42625746}],"concepts":[{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.5287727},{"id":"https://openalex.org/C149441793","wikidata":"https://www.wikidata.org/wiki/Q200726","display_name":"Probability distribution","level":2,"score":0.50187564},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.4845566},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.48392254},{"id":"https://openalex.org/C186899397","wikidata":"https://www.wikidata.org/wiki/Q1491980","display_name":"Galerkin method","level":3,"score":0.46848926},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.464091},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.4610886},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.4601304},{"id":"https://openalex.org/C158622935","wikidata":"https://www.wikidata.org/wiki/Q660848","display_name":"Nonlinear system","level":2,"score":0.44939524},{"id":"https://openalex.org/C197055811","wikidata":"https://www.wikidata.org/wiki/Q207522","display_name":"Probability density function","level":2,"score":0.43061635},{"id":"https://openalex.org/C91873725","wikidata":"https://www.wikidata.org/wiki/Q3445816","display_name":"Function approximation","level":3,"score":0.42759955},{"id":"https://openalex.org/C145242015","wikidata":"https://www.wikidata.org/wiki/Q774123","display_name":"Approximation theory","level":2,"score":0.42625746},{"id":"https://openalex.org/C14036430","wikidata":"https://www.wikidata.org/wiki/Q3736076","display_name":"Function (biology)","level":2,"score":0.4257969},{"id":"https://openalex.org/C165700671","wikidata":"https://www.wikidata.org/wiki/Q203484","display_name":"Laplace operator","level":2,"score":0.4103217},{"id":"https://openalex.org/C7218915","wikidata":"https://www.wikidata.org/wiki/Q1054475","display_name":"Gaussian function","level":3,"score":0.4100663},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.3836465},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.3180502},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.17128184},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.08032909},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.07782006},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.06537652},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C78458016","wikidata":"https://www.wikidata.org/wiki/Q840400","display_name":"Evolutionary biology","level":1,"score":0.0},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.0},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cdc.2016.7799105","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/1603.05496","pdf_url":"http://arxiv.org/pdf/1603.05496","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/1603.05496","pdf_url":"http://arxiv.org/pdf/1603.05496","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":22,"referenced_works":["https://openalex.org/W1522714617","https://openalex.org/W1573874356","https://openalex.org/W1966231103","https://openalex.org/W1995713768","https://openalex.org/W2002594585","https://openalex.org/W2022478817","https://openalex.org/W2041750361","https://openalex.org/W2058490559","https://openalex.org/W2089154204","https://openalex.org/W2090505239","https://openalex.org/W2101015373","https://openalex.org/W2103829273","https://openalex.org/W2143420533","https://openalex.org/W2571463739","https://openalex.org/W2795744704","https://openalex.org/W2964060765","https://openalex.org/W3021722416","https://openalex.org/W4213367101","https://openalex.org/W423603040","https://openalex.org/W4239071388","https://openalex.org/W4252782868","https://openalex.org/W4302617909"],"related_works":["https://openalex.org/W4387422913","https://openalex.org/W4236518439","https://openalex.org/W2766569526","https://openalex.org/W2381921570","https://openalex.org/W2235525867","https://openalex.org/W2156766998","https://openalex.org/W2103559015","https://openalex.org/W2064547980","https://openalex.org/W2050858476","https://openalex.org/W1607584003"],"abstract_inverted_index":{"This":[0],"paper":[1,79],"is":[2,20,33],"concerned":[3],"with":[4],"numerical":[5,93],"algorithms":[6,47,59,87,100],"for":[7,85,95,106],"gain":[8,18],"function":[9,19],"approximation":[10,69],"in":[11],"the":[12,21,43,58,63,71,86],"feedback":[13],"particle":[14],"filter.":[15],"The":[16,31,78],"exact":[17],"solution":[22,37],"of":[23,70],"a":[24,28,50,54,81,96,107],"Poisson":[25],"equation":[26],"involving":[27],"probability-weighted":[29],"Laplacian.":[30],"problem":[32],"to":[34,62],"approximate":[35],"this":[36],"using":[38],"only":[39],"particles":[40],"sampled":[41],"from":[42],"probability":[44,72],"distribution.":[45,98],"Two":[46],"are":[48,60,101],"presented:":[49],"Galerkin":[51],"algorithm":[52],"and":[53,65,104],"kernel-based":[55],"algorithm.":[56],"Both":[57],"adapted":[61],"samples":[64],"do":[66],"not":[67],"require":[68],"distribution":[73],"as":[74,88,90],"an":[75],"intermediate":[76],"step.":[77],"contains":[80],"preliminary":[82],"error":[83],"analysis":[84],"well":[89],"some":[91],"comparative":[92],"results":[94],"non-Gaussian":[97],"These":[99],"also":[102],"applied":[103],"illustrated":[105],"simple":[108],"nonlinear":[109],"filtering":[110],"example.":[111]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2963752762","counts_by_year":[{"year":2023,"cited_by_count":2},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":4},{"year":2019,"cited_by_count":8},{"year":2018,"cited_by_count":5},{"year":2017,"cited_by_count":5},{"year":2016,"cited_by_count":3}],"updated_date":"2024-10-05T21:17:03.189493","created_date":"2019-07-30"}