{"id":"https://openalex.org/W4391382310","doi":"https://doi.org/10.1109/camsap58249.2023.10403418","title":"A Preconditioned Hessian Proximal Algorithm for Spectral Compressed Sensing","display_name":"A Preconditioned Hessian Proximal Algorithm for Spectral Compressed Sensing","publication_year":2023,"publication_date":"2023-12-10","ids":{"openalex":"https://openalex.org/W4391382310","doi":"https://doi.org/10.1109/camsap58249.2023.10403418"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/camsap58249.2023.10403418","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5083444994","display_name":"Xi Yao","orcid":"https://orcid.org/0000-0002-5150-2401"},"institutions":[{"id":"https://openalex.org/I47508984","display_name":"Imperial College London","ror":"https://ror.org/041kmwe10","country_code":"GB","type":"education","lineage":["https://openalex.org/I47508984"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Xi Yao","raw_affiliation_strings":["Department of Electrical and Electronic Engineering, Imperial College London, London, UK"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Electronic Engineering, Imperial College London, London, UK","institution_ids":["https://openalex.org/I47508984"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100752236","display_name":"Wei Dai","orcid":"https://orcid.org/0000-0002-4781-3485"},"institutions":[{"id":"https://openalex.org/I47508984","display_name":"Imperial College London","ror":"https://ror.org/041kmwe10","country_code":"GB","type":"education","lineage":["https://openalex.org/I47508984"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Wei Dai","raw_affiliation_strings":["Department of Electrical and Electronic Engineering, Imperial College London, London, UK"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Electronic Engineering, Imperial College London, London, UK","institution_ids":["https://openalex.org/I47508984"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":70},"biblio":{"volume":"28","issue":null,"first_page":"476","last_page":"480"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10500","display_name":"Theory and Applications of Compressed Sensing","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10500","display_name":"Theory and Applications of Compressed Sensing","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12015","display_name":"Advances in Photoacoustic Imaging and Tomography","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11739","display_name":"Microwave Imaging for Breast Cancer Detection","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/hessian-matrix","display_name":"Hessian matrix","score":0.9204638},{"id":"https://openalex.org/keywords/regularization","display_name":"Regularization (linguistics)","score":0.6816554},{"id":"https://openalex.org/keywords/compressed-sensing","display_name":"Compressed Sensing","score":0.607529},{"id":"https://openalex.org/keywords/sparse-approximation","display_name":"Sparse Approximation","score":0.577928},{"id":"https://openalex.org/keywords/convex-optimization","display_name":"Convex Optimization","score":0.566465},{"id":"https://openalex.org/keywords/signal-decomposition","display_name":"Signal Decomposition","score":0.549937},{"id":"https://openalex.org/keywords/sparse-representations","display_name":"Sparse Representations","score":0.543514}],"concepts":[{"id":"https://openalex.org/C203616005","wikidata":"https://www.wikidata.org/wiki/Q620495","display_name":"Hessian matrix","level":2,"score":0.9204638},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.6994746},{"id":"https://openalex.org/C2776135515","wikidata":"https://www.wikidata.org/wiki/Q17143721","display_name":"Regularization (linguistics)","level":2,"score":0.6816554},{"id":"https://openalex.org/C124851039","wikidata":"https://www.wikidata.org/wiki/Q2665459","display_name":"Compressed sensing","level":2,"score":0.61934376},{"id":"https://openalex.org/C2777303404","wikidata":"https://www.wikidata.org/wiki/Q759757","display_name":"Convergence (economics)","level":2,"score":0.60197866},{"id":"https://openalex.org/C179799912","wikidata":"https://www.wikidata.org/wiki/Q205084","display_name":"Computational complexity theory","level":2,"score":0.5124453},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.45612916},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.4452419},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.35242766},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.19904986},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C50522688","wikidata":"https://www.wikidata.org/wiki/Q189833","display_name":"Economic growth","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/camsap58249.2023.10403418","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.45,"display_name":"Climate action","id":"https://metadata.un.org/sdg/13"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":25,"referenced_works":["https://openalex.org/W1968079322","https://openalex.org/W2018385545","https://openalex.org/W2133285942","https://openalex.org/W2135255014","https://openalex.org/W2138505091","https://openalex.org/W2160979406","https://openalex.org/W2184634347","https://openalex.org/W2268674159","https://openalex.org/W2339621810","https://openalex.org/W2528695050","https://openalex.org/W2565293665","https://openalex.org/W2962694024","https://openalex.org/W2963322354","https://openalex.org/W2963875218","https://openalex.org/W2964121507","https://openalex.org/W2964325628","https://openalex.org/W3047523639","https://openalex.org/W3173675855","https://openalex.org/W4244393449","https://openalex.org/W4286835709","https://openalex.org/W4293775970","https://openalex.org/W4302177835","https://openalex.org/W4312258136","https://openalex.org/W4372266578","https://openalex.org/W4388117623"],"related_works":["https://openalex.org/W4385064145","https://openalex.org/W4283017538","https://openalex.org/W2802707792","https://openalex.org/W2800988248","https://openalex.org/W2611031068","https://openalex.org/W2569979269","https://openalex.org/W2075777916","https://openalex.org/W1996936972","https://openalex.org/W1704347466","https://openalex.org/W1545275724"],"abstract_inverted_index":{"We":[0],"study":[1],"the":[2,45,55,84,88,92],"spectral":[3],"compressed":[4],"sensing":[5],"(SCS)":[6],"problem":[7,20],"to":[8,76,105],"recover":[9],"spectrally":[10],"sparse":[11],"signals":[12],"from":[13,101],"their":[14],"partially":[15],"observed":[16],"entries.":[17],"The":[18],"SCS":[19],"can":[21],"be":[22],"reformulated":[23],"as":[24],"a":[25,50,70,78,96],"low-rank":[26],"Hankel":[27,56],"matrix":[28],"completion":[29],"problem.":[30],"Conventional":[31],"first-order":[32],"methods":[33],"exhibit":[34],"slow":[35],"convergence":[36,40,64],"rates,":[37],"and":[38,65,87,126],"fast":[39,63],"speed":[41,125],"comes":[42],"with":[43,95],"sacrificing":[44],"accuracy":[46],"of":[47,91,123],"reconstruction.":[48],"Specifically,":[49],"small":[51],"regularization":[52,80],"coefficient":[53,81],"for":[54,109],"structure":[57],"constraint":[58],"is":[59,99],"employed.":[60],"To":[61],"pursue":[62],"accurate":[66],"reconstruction,":[67],"we":[68],"propose":[69],"Hessian":[71,98],"proximal":[72],"gradient":[73],"(HPG)":[74],"method":[75],"select":[77],"larger":[79],"without":[82],"compromising":[83],"reconstruction":[85,127],"accuracy,":[86],"computational":[89,124],"complexity":[90],"forward":[93],"step":[94],"preconditioned":[97],"reduced":[100],"