{"id":"https://openalex.org/W4294691360","doi":"https://doi.org/10.1109/access.2022.3204284","title":"A Deep Learning Approach Using Graph Neural Networks for Anomaly Detection in Air Quality Data Considering Spatiotemporal Correlations","display_name":"A Deep Learning Approach Using Graph Neural Networks for Anomaly Detection in Air Quality Data Considering Spatiotemporal Correlations","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4294691360","doi":"https://doi.org/10.1109/access.2022.3204284"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2022.3204284","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/6514899/09877800.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","doaj"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ieeexplore.ieee.org/ielx7/6287639/6514899/09877800.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5081092523","display_name":"Xiaoling Lin","orcid":null},"institutions":[{"id":"https://openalex.org/I3125743391","display_name":"China University of Geosciences (Beijing)","ror":"https://ror.org/04q6c7p66","country_code":"CN","type":"education","lineage":["https://openalex.org/I3125743391"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiaoling Lin","raw_affiliation_strings":["School of Engineering and Technology, China University of Geosciences (Beijing), Beijing, China"],"affiliations":[{"raw_affiliation_string":"School of Engineering and Technology, China University of Geosciences (Beijing), Beijing, China","institution_ids":["https://openalex.org/I3125743391"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101742243","display_name":"Shouxin Zhang","orcid":"https://orcid.org/0000-0003-2738-3286"},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hongzhang Wang","raw_affiliation_strings":["CCCC Second Navigation Bureau Third Engineering Company Ltd., Xuzhou, China"],"affiliations":[{"raw_affiliation_string":"CCCC Second Navigation Bureau Third Engineering Company Ltd., Xuzhou, China","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100445472","display_name":"Jing Guo","orcid":"https://orcid.org/0000-0002-0053-2678"},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jing Guo","raw_affiliation_strings":["CCCC Second Navigation Bureau Third Engineering Company Ltd., Xuzhou, China"],"affiliations":[{"raw_affiliation_string":"CCCC Second Navigation Bureau Third Engineering Company Ltd., Xuzhou, China","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5032883585","display_name":"Gang Mei","orcid":"https://orcid.org/0000-0003-0026-5423"},"institutions":[{"id":"https://openalex.org/I3125743391","display_name":"China University of Geosciences (Beijing)","ror":"https://ror.org/04q6c7p66","country_code":"CN","type":"education","lineage":["https://openalex.org/I3125743391"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Gang Mei","raw_affiliation_strings":["School of Engineering and Technology, China University of Geosciences (Beijing), Beijing, China"],"affiliations":[{"raw_affiliation_string":"School of Engineering and Technology, China University of Geosciences (Beijing), Beijing, China","institution_ids":["https://openalex.org/I3125743391"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"apc_paid":{"value":1850,"currency":"USD","value_usd":1850,"provenance":"doaj"},"fwci":0.812,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":7,"citation_normalized_percentile":{"value":0.555701,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":87,"max":89},"biblio":{"volume":"10","issue":null,"first_page":"94074","last_page":"94088"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12120","display_name":"Air Quality Monitoring and Forecasting","score":0.999,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12120","display_name":"Air Quality Monitoring and Forecasting","score":0.999,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10190","display_name":"Air Quality and Health Impacts","score":0.9952,"subfield":{"id":"https://openalex.org/subfields/2307","display_name":"Health, Toxicology and Mutagenesis"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11980","display_name":"Human Mobility and Location-Based Analysis","score":0.9797,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/autoencoder","display_name":"Autoencoder","score":0.6205821},{"id":"https://openalex.org/keywords/adjacency-matrix","display_name":"Adjacency matrix","score":0.501441},{"id":"https://openalex.org/keywords/spatial-correlation","display_name":"Spatial correlation","score":0.45687878},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.42224288}],"concepts":[{"id":"https://openalex.org/C739882","wikidata":"https://www.wikidata.org/wiki/Q3560506","display_name":"Anomaly detection","level":2,"score":0.6654832},{"id":"https://openalex.org/C101738243","wikidata":"https://www.wikidata.org/wiki/Q786435","display_name":"Autoencoder","level":3,"score":0.6205821},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6108537},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.59791446},{"id":"https://openalex.org/C117220453","wikidata":"https://www.wikidata.org/wiki/Q5172842","display_name":"Correlation","level":2,"score":0.5905622},{"id":"https://openalex.org/C126314574","wikidata":"https://www.wikidata.org/wiki/Q2364111","display_name":"Air quality index","level":2,"score":0.52656674},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5154275},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.5104815},{"id":"https://openalex.org/C180356752","wikidata":"https://www.wikidata.org/wiki/Q727035","display_name":"Adjacency matrix","level":3,"score":0.501441},{"id":"https://openalex.org/C150060386","wikidata":"https://www.wikidata.org/wiki/Q7574054","display_name":"Spatial correlation","level":2,"score":0.45687878},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.44455135},{"id":"https://openalex.org/C43711488","wikidata":"https://www.wikidata.org/wiki/Q7534783","display_name":"Skew","level":2,"score":0.42238992},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.42224288},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.27508867},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.21975616},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.14004096},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.108493835},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C153294291","wikidata":"https://www.wikidata.org/wiki/Q25261","display_name":"Meteorology","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2022.3204284","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/6514899/09877800.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://doaj.org/article/d3d8624c9e1f40e7be1d9ffc668cad7f","pdf_url":null,"source":{"id":"https://openalex.org/S4306401280","display_name":"DOAJ (DOAJ: Directory of Open Access Journals)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/access.2022.3204284","pdf_url":"https://ieeexplore.ieee.org/ielx7/6287639/6514899/09877800.pdf","source":{"id":"https://openalex.org/S2485537415","display_name":"IEEE Access","issn_l":"2169-3536","issn":["2169-3536"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"11602235"},{"funder":"https://openalex.org/F4320335787","funder_display_name":"Fundamental Research Funds for the Central Universities","award_id":"2652018091"}],"datasets":[],"versions":[],"referenced_works_count":40,"referenced_works":["https://openalex.org/W1876967670","https://openalex.org/W2033593649","https://openalex.org/W2066661942","https://openalex.org/W2073579860","https://openalex.org/W2089554624","https://openalex.org/W2126937069","https://openalex.org/W2132914434","https://openalex.org/W2158698691","https://openalex.org/W2550636676","https://openalex.org/W2554285426","https://openalex.org/W2557855533","https://openalex.org/W2761781079","https://openalex.org/W2766807000","https://openalex.org/W2766856590","https://openalex.org/W2768588703","https://openalex.org/W2798405286","https://openalex.org/W2808771744","https://openalex.org/W2811192320","https://openalex.org/W2913957870","https://openalex.org/W2945726195","https://openalex.org/W2970481843","https://openalex.org/W2981025625","https://openalex.org/W2991626282","https://openalex.org/W3015799890","https://openalex.org/W3023308054","https://openalex.org/W3090907207","https://openalex.org/W3092861045","https://openalex.org/W3096834012","https://openalex.org/W3098957257","https://openalex.org/W3109340983","https://openalex.org/W3113506750","https://openalex.org/W3130120950","https://openalex.org/W3135550350","https://openalex.org/W3162049936","https://openalex.org/W3196410189","https://openalex.org/W3200888467","https://openalex.org/W3201346989","https://openalex.org/W4224882649","https://openalex.org/W4297814361","https://openalex.org/W4300633279"],"related_works":["https://openalex.org/W4363671829","https://openalex.org/W3194885736","https://openalex.org/W3186512740","https://openalex.org/W3131327266","https://openalex.org/W3046391934","https://openalex.org/W3017266184","https://openalex.org/W3013693939","https://openalex.org/W2734887215","https://openalex.org/W2566616303","https://openalex.org/W2159052453"],"abstract_inverted_index":{"The":[0,29,91,222],"ambient":[1],"air":[2,18,37,59,83,88,117,133,219],"pollution":[3],"problem":[4],"has":[5],"become":[6],"more":[7],"severe":[8],"as":[9],"the":[10,64,100,108,141,149,153,160,176,191,210,225],"social":[11],"economy":[12],"develops.":[13],"Abnormal":[14],"event":[15],"detection":[16,34,131,231],"in":[17,36,132,165,172],"quality":[19,38,84,89,118,134,220],"data":[20,39,85,119,186,215],"can":[21],"prevent":[22],"property":[23],"loss":[24],"and":[25,54,79,112,152,182,194,216],"protect":[26],"human":[27],"health.":[28],"majority":[30],"of":[31,57,82,94,116,224],"existing":[32],"anomaly":[33,130,230],"models":[35],"are":[40,127,168,187],"based":[41],"on":[42,232],"a":[43,47,70],"single":[44,48],"variable":[45],"or":[46],"monitoring":[49],"station,":[50],"ignoring":[51],"spatial":[52,77,109,150],"correlation":[53,78,81,101,177],"multivariate":[55],"features":[56],"regional":[58],"pollutant":[60],"concentrations.":[61],"To":[62],"address":[63],"aforementioned":[65],"issues,":[66],"this":[67,95,137],"paper":[68],"proposes":[69],"new":[71],"deep":[72,198],"learning":[73,199],"approach":[74,96,226],"that":[75],"combines":[76],"temporal":[80,113,161],"to":[86,98,106,120,147,158,189,208],"detect":[87,217],"anomalies.":[90],"essential":[92],"idea":[93],"is":[97,145,156,206,227],"use":[99],"degree":[102,178],"between":[103,179],"node":[104,166,180],"information":[105,167],"fuse":[107],"correlational":[110,114],"feature":[111,115,154],"construct":[121],"spatiotemporal":[122,183,192,212],"graph":[123,184,213],"structure":[124,185,214],"data,":[125],"which":[126],"used":[128],"for":[129],"data.":[135],"In":[136],"proposed":[138],"approach,":[139],"(1)":[140],"weighted":[142],"adjacency":[143],"matrix":[144,155],"established":[146],"characterize":[148,159,190],"correlation,":[151],"constructed":[157,188],"correlation;":[162,193],"(2)":[163],"changes":[164,171],"transformed":[169],"into":[170],"edge":[173],"weights":[174],"using":[175],"information,":[181],"(3)":[195],"an":[196],"advanced":[197],"model,":[200],"Context":[201],"augmented":[202],"Graph":[203],"Autoencoder":[204],"(Con-GAE),":[205],"utilized":[207],"handle":[209],"above":[211],"abnormal":[218],"events.":[221],"efficiency":[223],"demonstrated":[228],"by":[229],"synthetic":[233],"test":[234],"sets":[235],"produced":[236],"from":[237],"real-world":[238],"datasets.":[239]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4294691360","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":3}],"updated_date":"2024-12-10T00:23:40.522245","created_date":"2022-09-06"}