iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1109/3DV62453.2024.00111
{"id":"https://openalex.org/W4399563711","doi":"https://doi.org/10.1109/3dv62453.2024.00111","title":"Physics-Based Rigid Body Object Tracking and Friction Filtering From RGB-D Videos","display_name":"Physics-Based Rigid Body Object Tracking and Friction Filtering From RGB-D Videos","publication_year":2024,"publication_date":"2024-03-18","ids":{"openalex":"https://openalex.org/W4399563711","doi":"https://doi.org/10.1109/3dv62453.2024.00111"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/3dv62453.2024.00111","pdf_url":null,"source":{"id":"https://openalex.org/S4363608458","display_name":"2021 International Conference on 3D Vision (3DV)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2309.15703","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5062974121","display_name":"Rama Krishna Kandukuri","orcid":"https://orcid.org/0000-0001-5814-8137"},"institutions":[{"id":"https://openalex.org/I4210135521","display_name":"Max Planck Institute for Intelligent Systems","ror":"https://ror.org/04fq9j139","country_code":"DE","type":"facility","lineage":["https://openalex.org/I149899117","https://openalex.org/I4210135521"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Rama Krishna Kandukuri","raw_affiliation_strings":["Embodied Vision Group, Max Planck Institute for Intelligent Systems, Tuebingen"],"affiliations":[{"raw_affiliation_string":"Embodied Vision Group, Max Planck Institute for Intelligent Systems, Tuebingen","institution_ids":["https://openalex.org/I4210135521"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5007587741","display_name":"Michael Strecke","orcid":"https://orcid.org/0000-0002-0322-0653"},"institutions":[{"id":"https://openalex.org/I4210135521","display_name":"Max Planck Institute for Intelligent Systems","ror":"https://ror.org/04fq9j139","country_code":"DE","type":"facility","lineage":["https://openalex.org/I149899117","https://openalex.org/I4210135521"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Michael Strecke","raw_affiliation_strings":["Embodied Vision Group, Max Planck Institute for Intelligent Systems, Tuebingen"],"affiliations":[{"raw_affiliation_string":"Embodied Vision Group, Max Planck Institute for Intelligent Systems, Tuebingen","institution_ids":["https://openalex.org/I4210135521"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5085424314","display_name":"Joerg Stueckler","orcid":"https://orcid.org/0000-0002-2328-4363"},"institutions":[{"id":"https://openalex.org/I4210135521","display_name":"Max Planck Institute for Intelligent Systems","ror":"https://ror.org/04fq9j139","country_code":"DE","type":"facility","lineage":["https://openalex.org/I149899117","https://openalex.org/I4210135521"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Joerg Stueckler","raw_affiliation_strings":["Embodied Vision Group, Max Planck Institute for Intelligent Systems, Tuebingen"],"affiliations":[{"raw_affiliation_string":"Embodied Vision Group, Max Planck Institute for Intelligent Systems, Tuebingen","institution_ids":["https://openalex.org/I4210135521"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":"abs/2211.13572","issue":null,"first_page":"1259","last_page":"1269"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10653","display_name":"Robot Manipulation and Learning","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10653","display_name":"Robot Manipulation and Learning","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11398","display_name":"Hand Gesture Recognition Systems","score":0.9965,"subfield":{"id":"https://openalex.org/subfields/1709","display_name":"Human-Computer Interaction"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12111","display_name":"Industrial Vision Systems and Defect Detection","score":0.9887,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/tracking","display_name":"Tracking (education)","score":0.690544},{"id":"https://openalex.org/keywords/3d-object-recognition","display_name":"3D Object Recognition","score":0.611754},{"id":"https://openalex.org/keywords/real-time-tracking","display_name":"Real-time Tracking","score":0.609511},{"id":"https://openalex.org/keywords/surface-defect-detection","display_name":"Surface Defect Detection","score":0.606863},{"id":"https://openalex.org/keywords/rgb-color-model","display_name":"RGB color model","score":0.54407996},{"id":"https://openalex.org/keywords/continuous-recognition","display_name":"Continuous Recognition","score":0.543438},{"id":"https://openalex.org/keywords/gesture-recognition","display_name":"Gesture Recognition","score":0.5414}],"concepts":[{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.7020992},{"id":"https://openalex.org/C2775936607","wikidata":"https://www.wikidata.org/wiki/Q466845","display_name":"Tracking (education)","level":2,"score":0.690544},{"id":"https://openalex.org/C202474056","wikidata":"https://www.wikidata.org/wiki/Q1931635","display_name":"Video tracking","level":3,"score":0.60485876},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5537872},{"id":"https://openalex.org/C145980571","wikidata":"https://www.wikidata.org/wiki/Q192788","display_name":"Rigid body","level":2,"score":0.54468405},{"id":"https://openalex.org/C82990744","wikidata":"https://www.wikidata.org/wiki/Q166194","display_name":"RGB color model","level":2,"score":0.54407996},{"id":"https://openalex.org/C2781238097","wikidata":"https://www.wikidata.org/wiki/Q175026","display_name":"Object (grammar)","level":2,"score":0.50414264},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.42396033},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.42106333},{"id":"https://openalex.org/C121684516","wikidata":"https://www.wikidata.org/wiki/Q7600677","display_name":"Computer graphics (images)","level":1,"score":0.40571016},{"id":"https://openalex.org/C74650414","wikidata":"https://www.wikidata.org/wiki/Q11397","display_name":"Classical mechanics","level":1,"score":0.13814035},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.0},{"id":"https://openalex.org/C19417346","wikidata":"https://www.wikidata.org/wiki/Q7922","display_name":"Pedagogy","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/3dv62453.2024.00111","pdf_url":null,"source":{"id":"https://openalex.org/S4363608458","display_name":"2021 International Conference on 3D Vision (3DV)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2309.15703","pdf_url":"https://arxiv.org/pdf/2309.15703","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2309.15703","pdf_url":"https://arxiv.org/pdf/2309.15703","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320320879","funder_display_name":"Deutsche Forschungsgemeinschaft","award_id":null},{"funder":"https://openalex.org/F4320321408","funder_display_name":"Ministry of Education","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":52,"referenced_works":["https://openalex.org/W1505952289","https://openalex.org/W1991544872","https://openalex.org/W1992706277","https://openalex.org/W2017161545","https://openalex.org/W2032268079","https://openalex.org/W2047328415","https://openalex.org/W2065042868","https://openalex.org/W2084455417","https://openalex.org/W2097649661","https://openalex.org/W2099969393","https://openalex.org/W2121134834","https://openalex.org/W2181623680","https://openalex.org/W2560674852","https://openalex.org/W2605089300","https://openalex.org/W2739153774","https://openalex.org/W2795999188","https://openalex.org/W2888752296","https://openalex.org/W2891122218","https://openalex.org/W2895410314","https://openalex.org/W2913685494","https://openalex.org/W2944462671","https://openalex.org/W2949676527","https://openalex.org/W2963150697","https://openalex.org/W2963188159","https://openalex.org/W2964226622","https://openalex.org/W2964779621","https://openalex.org/W2967352563","https://openalex.org/W2989838178","https://openalex.org/W3022072906","https://openalex.org/W3034986117","https://openalex.org/W3035662013","https://openalex.org/W3035733723","https://openalex.org/W3089624309","https://openalex.org/W3090308608","https://openalex.org/W3092774272","https://openalex.org/W3099587965","https://openalex.org/W3106487434","https://openalex.org/W3109908659","https://openalex.org/W3128632815","https://openalex.org/W3130138602","https://openalex.org/W3179923621","https://openalex.org/W3205069776","https://openalex.org/W4205105995","https://openalex.org/W4225563658","https://openalex.org/W4280586263","https://openalex.org/W4301496368","https://openalex.org/W4312266040","https://openalex.org/W4312476766","https://openalex.org/W4312594783","https://openalex.org/W4327522269","https://openalex.org/W569478347","https://openalex.org/W966441290"],"related_works":["https://openalex.org/W4388689193","https://openalex.org/W4327670844","https://openalex.org/W4285271403","https://openalex.org/W3156013036","https://openalex.org/W2985362983","https://openalex.org/W2968379562","https://openalex.org/W29633852","https://openalex.org/W2542007731","https://openalex.org/W2110899030","https://openalex.org/W2091015105"],"abstract_inverted_index":{"Physics-based":[0],"understanding":[1],"of":[2,23,53,104,106,121],"object":[3],"interactions":[4],"from":[5,46],"sensory":[6],"observations":[7],"is":[8],"an":[9,66],"essential":[10],"capability":[11],"in":[12,44,65,81,117,150],"augmented":[13],"reality":[14],"and":[15,28,49,74,80,98,124,130,155],"robotics.":[16],"It":[17],"enables":[18],"to":[19,146],"capture":[20],"the":[21,54,102,107],"properties":[22,52],"a":[24,35,58,135],"scene":[25],"for":[26,38,76],"simulation":[27,61],"control.":[29],"In":[30],"this":[31,82,151],"paper,":[32],"we":[33],"propose":[34],"novel":[36,141,152],"approach":[37,92,112,133],"real-to-sim":[39],"which":[40,70],"tracks":[41],"rigid":[42],"objects":[43,123],"3D":[45],"RGB-D":[47],"images":[48],"infers":[50],"physical":[51],"objects.":[55,108,126],"We":[56,88,109,127,138],"use":[57],"differentiable":[59],"physics":[60],"as":[62],"state-transition":[63],"model":[64,72],"Extended":[67],"Kalman":[68],"Filter":[69],"can":[71,93,100],"contact":[73],"friction":[75,105],"arbitrary":[77],"mesh-based":[78],"shapes":[79],"way":[83],"estimate":[84,101],"physically":[85],"plausible":[86],"trajectories.":[87],"demonstrate":[89,129],"that":[90],"our":[91,111,132,140,158],"filter":[94],"position,":[95],"orientation,":[96],"velocities,":[97],"concurrently":[99],"coefficient":[103],"analyze":[110],"on":[113,134],"various":[114],"sliding":[115],"scenarios":[116],"synthetic":[118],"image":[119],"sequences":[120],"single":[122],"colliding":[125],"also":[128],"evaluate":[131],"real-world":[136],"dataset.":[137],"make":[139],"benchmark":[142],"datasets":[143],"publicly":[144],"available":[145],"foster":[147],"future":[148],"research":[149],"problem":[153],"setting":[154],"comparison":[156],"with":[157],"method.":[159]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4399563711","counts_by_year":[],"updated_date":"2024-12-04T20:43:01.030033","created_date":"2024-06-13"}