{"id":"https://openalex.org/W2964225242","doi":"https://doi.org/10.1109/3dv.2016.75","title":"Learning Camera Viewpoint Using CNN to Improve 3D Body Pose Estimation","display_name":"Learning Camera Viewpoint Using CNN to Improve 3D Body Pose Estimation","publication_year":2016,"publication_date":"2016-10-01","ids":{"openalex":"https://openalex.org/W2964225242","doi":"https://doi.org/10.1109/3dv.2016.75","mag":"2964225242"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/3dv.2016.75","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/1609.05522","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5013391479","display_name":"Mona Fathollahi Ghezelghieh","orcid":null},"institutions":[{"id":"https://openalex.org/I2613432","display_name":"University of South Florida","ror":"https://ror.org/032db5x82","country_code":"US","type":"education","lineage":["https://openalex.org/I2613432"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Mona Fathollahi Ghezelghieh","raw_affiliation_strings":["Department of Computer Science and Engineering, University of South Florida, Tampa"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Engineering, University of South Florida, Tampa","institution_ids":["https://openalex.org/I2613432"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5063184621","display_name":"Rangachar Kasturi","orcid":"https://orcid.org/0000-0003-3956-1967"},"institutions":[{"id":"https://openalex.org/I2613432","display_name":"University of South Florida","ror":"https://ror.org/032db5x82","country_code":"US","type":"education","lineage":["https://openalex.org/I2613432"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Rangachar Kasturi","raw_affiliation_strings":["Department of Computer Science and Engineering, University of South Florida, Tampa"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Engineering, University of South Florida, Tampa","institution_ids":["https://openalex.org/I2613432"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5020674314","display_name":"Sudeep Sarkar","orcid":"https://orcid.org/0000-0001-7332-4207"},"institutions":[{"id":"https://openalex.org/I2613432","display_name":"University of South Florida","ror":"https://ror.org/032db5x82","country_code":"US","type":"education","lineage":["https://openalex.org/I2613432"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Sudeep Sarkar","raw_affiliation_strings":["Department of Computer Science and Engineering, University of South Florida, Tampa"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Engineering, University of South Florida, Tampa","institution_ids":["https://openalex.org/I2613432"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.899,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":42,"citation_normalized_percentile":{"value":0.930954,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10812","display_name":"Human Action Recognition and Pose Estimation","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10812","display_name":"Human Action Recognition and Pose Estimation","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10331","display_name":"Visual Object Tracking and Person Re-identification","score":0.9914,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10531","display_name":"Stereo Vision and Depth Estimation","score":0.99,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/3d-human-pose","display_name":"3D Human Pose","score":0.631045},{"id":"https://openalex.org/keywords/pose-estimation","display_name":"Pose Estimation","score":0.630706},{"id":"https://openalex.org/keywords/depth-estimation","display_name":"Depth Estimation","score":0.552911},{"id":"https://openalex.org/keywords/rgb-color-model","display_name":"RGB color model","score":0.5509094},{"id":"https://openalex.org/keywords/scene-reconstruction","display_name":"Scene Reconstruction","score":0.53165},{"id":"https://openalex.org/keywords/foreground-segmentation","display_name":"Foreground Segmentation","score":0.521504}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.8610736},{"id":"https://openalex.org/C52102323","wikidata":"https://www.wikidata.org/wiki/Q1671968","display_name":"Pose","level":2,"score":0.83822083},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.76673234},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.7487885},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.7230903},{"id":"https://openalex.org/C36613465","wikidata":"https://www.wikidata.org/wiki/Q4636322","display_name":"3D pose estimation","level":3,"score":0.59612274},{"id":"https://openalex.org/C205711294","wikidata":"https://www.wikidata.org/wiki/Q176953","display_name":"Rendering (computer graphics)","level":2,"score":0.5723008},{"id":"https://openalex.org/C82990744","wikidata":"https://www.wikidata.org/wiki/Q166194","display_name":"RGB color model","level":2,"score":0.5509094},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.49569738},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.4858079},{"id":"https://openalex.org/C22100474","wikidata":"https://www.wikidata.org/wiki/Q4800952","display_name":"Articulated body pose estimation","level":4,"score":0.48495746},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3283437}],"mesh":[],"locations_count":3,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/3dv.2016.75","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1609.05522","pdf_url":"https://arxiv.org/pdf/1609.05522","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/1609.05522","pdf_url":"http://arxiv.org/pdf/1609.05522","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1609.05522","pdf_url":"https://arxiv.org/pdf/1609.05522","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":33,"referenced_works":["https://openalex.org/W1537698211","https://openalex.org/W1591870335","https://openalex.org/W1746819321","https://openalex.org/W1905368000","https://openalex.org/W1943191679","https://openalex.org/W1963882359","https://openalex.org/W1984035731","https://openalex.org/W2010625607","https://openalex.org/W2022508996","https://openalex.org/W2043825031","https://openalex.org/W2052747804","https://openalex.org/W2054820429","https://openalex.org/W2099333815","https://openalex.org/W2101032778","https://openalex.org/W2108598243","https://openalex.org/W2111446867","https://openalex.org/W2134704262","https://openalex.org/W2147768505","https://openalex.org/W2155196764","https://openalex.org/W2163605009","https://openalex.org/W2169738563","https://openalex.org/W2178077220","https://openalex.org/W2270288817","https://openalex.org/W2273818272","https://openalex.org/W2286727787","https://openalex.org/W2293220651","https://openalex.org/W2962729993","https://openalex.org/W2963013806","https://openalex.org/W2963173190","https://openalex.org/W2963474899","https://openalex.org/W2963592930","https://openalex.org/W4211049957","https://openalex.org/W78159342"],"related_works":["https://openalex.org/W54333131","https://openalex.org/W3102636071","https://openalex.org/W2997897143","https://openalex.org/W290666912","https://openalex.org/W2567319754","https://openalex.org/W2129348295","https://openalex.org/W2128635338","https://openalex.org/W2033672678","https://openalex.org/W2025164974","https://openalex.org/W1968716783"],"abstract_inverted_index":{"The":[0],"objective":[1],"of":[2,24,66,97],"this":[3,40,72],"work":[4],"is":[5],"to":[6,53,82,108,128,136],"estimate":[7],"3D":[8,59,105,120],"human":[9],"pose":[10,37,60,121],"from":[11],"a":[12,76],"single":[13],"RGB":[14],"image.":[15],"Extracting":[16],"image":[17],"representations":[18],"which":[19],"incorporate":[20],"both":[21],"spatial":[22],"relation":[23],"body":[25,95,144],"parts":[26],"and":[27,94,125],"their":[28],"relative":[29],"depth":[30],"plays":[31],"an":[32],"essential":[33],"role":[34],"in":[35,51,100],"accurate3D":[36],"reconstruction.":[38],"In":[39],"paper,":[41],"for":[42],"the":[43,63,89,98,101,118,137],"first":[44],"time,":[45],"we":[46,74,103],"show":[47],"that":[48,140],"camera":[49,85],"viewpoint":[50],"combination":[52],"2D":[54],"joint":[55],"locations":[56],"significantly":[57],"improves":[58],"accuracy":[61],"without":[62],"explicit":[64],"use":[65,143],"perspective":[67],"geometry":[68],"mathematical":[69],"models.":[70],"To":[71,87],"end,":[73],"train":[75],"deep":[77],"Convolutional":[78],"Neural":[79],"Net-work":[80],"(CNN)":[81],"learn":[83],"categorical":[84],"viewpoint.":[86],"make":[88],"network":[90],"robust":[91],"against":[92],"clothing":[93],"shape":[96],"subject":[99],"image,":[102],"utilized":[104],"computer":[106],"rendering":[107],"synthesize":[109],"additional":[110],"training":[111],"images.":[112],"We":[113],"test":[114],"our":[115],"framework":[116],"on":[117,132],"largest":[119],"estimation":[122],"bench-mark,":[123],"Human3.6m,":[124],"achieve":[126],"up":[127],"20%":[129],"error":[130],"reduction":[131],"standing-pose":[133],"activities":[134],"compared":[135],"state-of-the-art":[138],"approaches":[139],"do":[141],"not":[142],"part":[145],"segmentation.":[146]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2964225242","counts_by_year":[{"year":2024,"cited_by_count":4},{"year":2023,"cited_by_count":4},{"year":2022,"cited_by_count":3},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":6},{"year":2019,"cited_by_count":13},{"year":2018,"cited_by_count":5},{"year":2017,"cited_by_count":5}],"updated_date":"2024-12-03T21:05:50.846865","created_date":"2019-07-30"}