{"id":"https://openalex.org/W2069365310","doi":"https://doi.org/10.1080/18756891.2014.889877","title":"Empirical Mode Decomposition and Rough Set Attribute Reduction for Ultrasonic Flaw Signal Classification","display_name":"Empirical Mode Decomposition and Rough Set Attribute Reduction for Ultrasonic Flaw Signal Classification","publication_year":2014,"publication_date":"2014-01-01","ids":{"openalex":"https://openalex.org/W2069365310","doi":"https://doi.org/10.1080/18756891.2014.889877","mag":"2069365310"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1080/18756891.2014.889877","pdf_url":"https://www.atlantis-press.com/article/25868499.pdf","source":{"id":"https://openalex.org/S190680769","display_name":"International Journal of Computational Intelligence Systems","issn_l":"1875-6883","issn":["1875-6883","1875-6891"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319965","host_organization_name":"Springer Nature","host_organization_lineage":["https://openalex.org/P4310319965"],"host_organization_lineage_names":["Springer Nature"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://www.atlantis-press.com/article/25868499.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5076720384","display_name":"Peng Yang","orcid":"https://orcid.org/0000-0001-5333-6155"},"institutions":[{"id":"https://openalex.org/I927504317","display_name":"Nanchang Hangkong University","ror":"https://ror.org/0369pvp92","country_code":"CN","type":"education","lineage":["https://openalex.org/I927504317"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Peng Yang","raw_affiliation_strings":["School of Information Engineering, Nanchang Hangkong University Nanchang 330063, China ; Key Laboratory of Nondestructive Testing (Nanchang Hangkong University), Ministry of Education Nanchang 330063, China E-mail: llylab@21cn.com"],"affiliations":[{"raw_affiliation_string":"School of Information Engineering, Nanchang Hangkong University Nanchang 330063, China ; Key Laboratory of Nondestructive Testing (Nanchang Hangkong University), Ministry of Education Nanchang 330063, China E-mail: llylab@21cn.com","institution_ids":["https://openalex.org/I927504317"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5066682920","display_name":"Qintian Yang","orcid":null},"institutions":[{"id":"https://openalex.org/I927504317","display_name":"Nanchang Hangkong University","ror":"https://ror.org/0369pvp92","country_code":"CN","type":"education","lineage":["https://openalex.org/I927504317"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Qintian Yang","raw_affiliation_strings":["School of Information Engineering,Nanchang HangKong University,Nanchang 330063,China)"],"affiliations":[{"raw_affiliation_string":"School of Information Engineering,Nanchang HangKong University,Nanchang 330063,China)","institution_ids":["https://openalex.org/I927504317"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":1390,"currency":"GBP","value_usd":1704,"provenance":"doaj"},"apc_paid":{"value":1390,"currency":"GBP","value_usd":1704,"provenance":"doaj"},"fwci":0.372,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":8,"citation_normalized_percentile":{"value":0.857021,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":84,"max":85},"biblio":{"volume":"7","issue":"3","first_page":"481","last_page":"481"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10220","display_name":"Machine Fault Diagnosis and Prognostics","score":0.9976,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10220","display_name":"Machine Fault Diagnosis and Prognostics","score":0.9976,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12086","display_name":"Modeling and Assessment of Pipeline Corrosion Damage","score":0.9976,"subfield":{"id":"https://openalex.org/subfields/2210","display_name":"Mechanical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10662","display_name":"Guided Wave Structural Health Monitoring in Materials","score":0.9973,"subfield":{"id":"https://openalex.org/subfields/2211","display_name":"Mechanics of Materials"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/empirical-mode-decomposition","display_name":"Empirical Mode Decomposition","score":0.62089},{"id":"https://openalex.org/keywords/ultrasonic-arrays","display_name":"Ultrasonic Arrays","score":0.522682},{"id":"https://openalex.org/keywords/nonlinear-ultrasonic-techniques","display_name":"Nonlinear Ultrasonic Techniques","score":0.52121},{"id":"https://openalex.org/keywords/finite-element-analysis","display_name":"Finite Element Analysis","score":0.503635}],"concepts":[{"id":"https://openalex.org/C25570617","wikidata":"https://www.wikidata.org/wiki/Q1006462","display_name":"Hilbert\u2013Huang transform","level":3,"score":0.7817375},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.74956745},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6367481},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.63422745},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.6118717},{"id":"https://openalex.org/C148483581","wikidata":"https://www.wikidata.org/wiki/Q446488","display_name":"Feature selection","level":2,"score":0.5928029},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.5392711},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.49534908},{"id":"https://openalex.org/C81288441","wikidata":"https://www.wikidata.org/wiki/Q20736125","display_name":"Ultrasonic sensor","level":2,"score":0.49497217},{"id":"https://openalex.org/C111012933","wikidata":"https://www.wikidata.org/wiki/Q3137210","display_name":"Rough set","level":2,"score":0.49124783},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.4534585},{"id":"https://openalex.org/C73000952","wikidata":"https://www.wikidata.org/wiki/Q17007827","display_name":"Discretization","level":2,"score":0.42295542},{"id":"https://openalex.org/C27438332","wikidata":"https://www.wikidata.org/wiki/Q2873","display_name":"Principal component analysis","level":2,"score":0.42094895},{"id":"https://openalex.org/C47432892","wikidata":"https://www.wikidata.org/wiki/Q831390","display_name":"Wavelet","level":2,"score":0.4171006},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.27863792},{"id":"https://openalex.org/C24890656","wikidata":"https://www.wikidata.org/wiki/Q82811","display_name":"Acoustics","level":1,"score":0.07323328},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.0715175},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1080/18756891.2014.889877","pdf_url":"https://www.atlantis-press.com/article/25868499.pdf","source":{"id":"https://openalex.org/S190680769","display_name":"International Journal of Computational Intelligence Systems","issn_l":"1875-6883","issn":["1875-6883","1875-6891"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319965","host_organization_name":"Springer Nature","host_organization_lineage":["https://openalex.org/P4310319965"],"host_organization_lineage_names":["Springer Nature"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1080/18756891.2014.889877","pdf_url":"https://www.atlantis-press.com/article/25868499.pdf","source":{"id":"https://openalex.org/S190680769","display_name":"International Journal of Computational Intelligence Systems","issn_l":"1875-6883","issn":["1875-6883","1875-6891"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319965","host_organization_name":"Springer Nature","host_organization_lineage":["https://openalex.org/P4310319965"],"host_organization_lineage_names":["Springer Nature"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"display_name":"Peace, justice, and strong institutions","id":"https://metadata.un.org/sdg/16","score":0.76}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":27,"referenced_works":["https://openalex.org/W1522056847","https://openalex.org/W1870288786","https://openalex.org/W1999758766","https://openalex.org/W2004759267","https://openalex.org/W2014001964","https://openalex.org/W2019328284","https://openalex.org/W2028028096","https://openalex.org/W2038810627","https://openalex.org/W2049989654","https://openalex.org/W2061444298","https://openalex.org/W2068632145","https://openalex.org/W2070110000","https://openalex.org/W2086876270","https://openalex.org/W2089834301","https://openalex.org/W2099429709","https://openalex.org/W2110870783","https://openalex.org/W2128771953","https://openalex.org/W2132176104","https://openalex.org/W2146955521","https://openalex.org/W2148822206","https://openalex.org/W2150072852","https://openalex.org/W2169569004","https://openalex.org/W2170517942","https://openalex.org/W2561675875","https://openalex.org/W2988485941","https://openalex.org/W4242499730","https://openalex.org/W4281257062"],"related_works":["https://openalex.org/W3014107421","https://openalex.org/W2380939102","https://openalex.org/W2377062149","https://openalex.org/W2363056446","https://openalex.org/W2359718298","https://openalex.org/W2106315878","https://openalex.org/W2089603224","https://openalex.org/W2081563414","https://openalex.org/W2076661204","https://openalex.org/W2049054074"],"abstract_inverted_index":{"Feature":[0],"extraction":[1,116],"and":[2,32,37,102,117,133],"selection":[3],"are":[4,43,75],"the":[5,24,46,86,112],"most":[6],"important":[7],"techniques":[8],"for":[9,55,89],"ultrasonic":[10,127],"flaw":[11,90,128],"signal":[12],"classification.In":[13],"this":[14],"study,":[15],"empirical":[16],"mode":[17,26],"decomposition":[18],"(EMD)":[19],"is":[20,53],"used":[21,54],"to":[22,69,84,96],"obtain":[23],"intrinsic":[25],"functions":[27],"(IMFs)":[28],"of":[29,79,114],"original":[30],"signal,":[31],"their":[33],"corresponding":[34],"traditional":[35],"time":[36],"frequency":[38],"domain":[39],"based":[40,100],"statistical":[41],"parameters":[42],"extracted":[44],"as":[45,77],"initial":[47],"features.After":[48],"that,":[49],"spectral":[50],"clustering":[51],"method":[52],"feature":[56,71,115],"value":[57],"discretization":[58],"so":[59],"that":[60,94],"rough":[61],"set":[62],"attribute":[63],"reduction":[64],"(RSAR)":[65],"can":[66,110,123],"be":[67],"applied":[68],"implement":[70],"selection.The":[72],"final":[73],"features":[74],"taken":[76],"input":[78],"artificial":[80],"neural":[81],"networks":[82],"(ANNs)":[83],"train":[85],"decision":[87],"classifier":[88],"identification.Experimental":[91],"results":[92],"show":[93],"compared":[95],"conventional":[97],"wavelet":[98],"transform":[99],"schemes":[101],"principal":[103],"components":[104],"analysis,":[105],"EMD":[106],"combined":[107],"with":[108,130],"RSAR":[109],"improve":[111],"performance":[113],"selection.ANN":[118],"by":[119],"using":[120],"such":[121],"scheme":[122],"effectively":[124],"classify":[125],"different":[126],"signals":[129],"high":[131],"accuracy":[132],"low":[134],"training":[135],"elapsed":[136],"time.":[137]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2069365310","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1},{"year":2021,"cited_by_count":2},{"year":2019,"cited_by_count":1},{"year":2018,"cited_by_count":2},{"year":2015,"cited_by_count":1}],"updated_date":"2024-11-21T09:04:48.682509","created_date":"2016-06-24"}