iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1016/J.PROCS.2017.05.009
{"id":"https://openalex.org/W2617739603","doi":"https://doi.org/10.1016/j.procs.2017.05.009","title":"Distributed Bayesian Probabilistic Matrix Factorization","display_name":"Distributed Bayesian Probabilistic Matrix Factorization","publication_year":2017,"publication_date":"2017-01-01","ids":{"openalex":"https://openalex.org/W2617739603","doi":"https://doi.org/10.1016/j.procs.2017.05.009","mag":"2617739603"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.procs.2017.05.009","pdf_url":null,"source":{"id":"https://openalex.org/S120348307","display_name":"Procedia Computer Science","issn_l":"1877-0509","issn":["1877-0509"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["arxiv","crossref","datacite"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://doi.org/10.1016/j.procs.2017.05.009","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5062390065","display_name":"Tom Vander Aa","orcid":"https://orcid.org/0000-0002-1504-5266"},"institutions":[{"id":"https://openalex.org/I4210114974","display_name":"IMEC","ror":"https://ror.org/02kcbn207","country_code":"BE","type":"nonprofit","lineage":["https://openalex.org/I4210114974"]}],"countries":["BE"],"is_corresponding":true,"raw_author_name":"Tom Vander Aa","raw_affiliation_strings":["Exascience Lab, Imec, Kapeldreef 75, B-3001 Leuven, Belgium"],"affiliations":[{"raw_affiliation_string":"Exascience Lab, Imec, Kapeldreef 75, B-3001 Leuven, Belgium","institution_ids":["https://openalex.org/I4210114974"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5052088324","display_name":"Imen Chakroun","orcid":"https://orcid.org/0000-0002-8873-1793"},"institutions":[{"id":"https://openalex.org/I4210114974","display_name":"IMEC","ror":"https://ror.org/02kcbn207","country_code":"BE","type":"nonprofit","lineage":["https://openalex.org/I4210114974"]}],"countries":["BE"],"is_corresponding":true,"raw_author_name":"Imen Chakroun","raw_affiliation_strings":["Exascience Lab, Imec, Kapeldreef 75, B-3001 Leuven, Belgium"],"affiliations":[{"raw_affiliation_string":"Exascience Lab, Imec, Kapeldreef 75, B-3001 Leuven, Belgium","institution_ids":["https://openalex.org/I4210114974"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5057211507","display_name":"Tom Haber","orcid":"https://orcid.org/0000-0001-8378-8689"},"institutions":[],"countries":["BE"],"is_corresponding":true,"raw_author_name":"Tom Haber","raw_affiliation_strings":["Expertise Centre for Digital Media, Wetenschapspark 2, 3590 Diepenbeek, Belgium"],"affiliations":[{"raw_affiliation_string":"Expertise Centre for Digital Media, Wetenschapspark 2, 3590 Diepenbeek, Belgium","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5062390065","https://openalex.org/A5052088324","https://openalex.org/A5057211507"],"corresponding_institution_ids":["https://openalex.org/I4210114974","https://openalex.org/I4210114974"],"apc_list":null,"apc_paid":null,"fwci":5.545,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":16,"citation_normalized_percentile":{"value":0.944221,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":89,"max":90},"biblio":{"volume":"108","issue":null,"first_page":"1030","last_page":"1039"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10203","display_name":"Recommender Systems and Techniques","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10203","display_name":"Recommender Systems and Techniques","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9906,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9874,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/gibbs-sampling","display_name":"Gibbs sampling","score":0.61745},{"id":"https://openalex.org/keywords/implementation","display_name":"Implementation","score":0.5138638}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.91805553},{"id":"https://openalex.org/C151319957","wikidata":"https://www.wikidata.org/wiki/Q752739","display_name":"Asynchronous communication","level":2,"score":0.7259587},{"id":"https://openalex.org/C158424031","wikidata":"https://www.wikidata.org/wiki/Q1191905","display_name":"Gibbs sampling","level":3,"score":0.61745},{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.6096106},{"id":"https://openalex.org/C42355184","wikidata":"https://www.wikidata.org/wiki/Q1361088","display_name":"Matrix decomposition","level":3,"score":0.60736775},{"id":"https://openalex.org/C26713055","wikidata":"https://www.wikidata.org/wiki/Q245962","display_name":"Implementation","level":2,"score":0.5138638},{"id":"https://openalex.org/C120314980","wikidata":"https://www.wikidata.org/wiki/Q180634","display_name":"Distributed computing","level":1,"score":0.48010376},{"id":"https://openalex.org/C187834632","wikidata":"https://www.wikidata.org/wiki/Q188804","display_name":"Factorization","level":2,"score":0.46128482},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.40382537},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.36711606},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.3510766},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.34633595},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.33480245},{"id":"https://openalex.org/C173608175","wikidata":"https://www.wikidata.org/wiki/Q232661","display_name":"Parallel computing","level":1,"score":0.3344559},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.079349905},{"id":"https://openalex.org/C158693339","wikidata":"https://www.wikidata.org/wiki/Q190524","display_name":"Eigenvalues and eigenvectors","level":2,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":5,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.procs.2017.05.009","pdf_url":null,"source":{"id":"https://openalex.org/S120348307","display_name":"Procedia Computer Science","issn_l":"1877-0509","issn":["1877-0509"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/1705.10633","pdf_url":"http://arxiv.org/pdf/1705.10633","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1705.04159","pdf_url":"https://arxiv.org/pdf/1705.04159","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1705.10633","pdf_url":"https://arxiv.org/pdf/1705.10633","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.1705.10633","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.procs.2017.05.009","pdf_url":null,"source":{"id":"https://openalex.org/S120348307","display_name":"Procedia Computer Science","issn_l":"1877-0509","issn":["1877-0509"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/9","display_name":"Industry, innovation and infrastructure","score":0.47}],"grants":[],"datasets":[],"versions":["https://openalex.org/W2617739603"],"referenced_works_count":20,"referenced_works":["https://openalex.org/W1511814458","https://openalex.org/W1575350781","https://openalex.org/W1975875968","https://openalex.org/W1980147176","https://openalex.org/W1998003984","https://openalex.org/W2016210396","https://openalex.org/W2054141820","https://openalex.org/W2085040216","https://openalex.org/W2101893470","https://openalex.org/W2130336429","https://openalex.org/W2139762415","https://openalex.org/W2163501979","https://openalex.org/W2219888463","https://openalex.org/W2245277337","https://openalex.org/W2294861644","https://openalex.org/W2599054664","https://openalex.org/W3016205154","https://openalex.org/W3100190457","https://openalex.org/W31923072","https://openalex.org/W4240959780"],"related_works":["https://openalex.org/W4297819361","https://openalex.org/W4294338060","https://openalex.org/W2977179488","https://openalex.org/W2144453115","https://openalex.org/W2120447654","https://openalex.org/W2116677773","https://openalex.org/W1973739845","https://openalex.org/W1494824878","https://openalex.org/W1491017262","https://openalex.org/W119752240"],"abstract_inverted_index":{"Using":[0],"the":[1,29,31,49,63,93,100],"matrix":[2],"factorization":[3],"technique":[4],"in":[5,12,92],"machine":[6],"learning":[7],"is":[8],"very":[9],"common":[10],"mainly":[11],"areas":[13],"like":[14],"recommender":[15],"systems.":[16],"Despite":[17],"its":[18,23],"high":[19],"prediction":[20],"accuracy":[21],"and":[22,70,87],"ability":[24],"to":[25],"avoid":[26],"over-fitting":[27],"of":[28,48,62,99],"data,":[30],"Bayesian":[32],"Probabilistic":[33],"Matrix":[34],"Factorization":[35],"algorithm":[36],"(BPMF)":[37],"has":[38],"not":[39],"been":[40],"widely":[41],"used":[42],"on":[43,68,83],"large":[44],"scale":[45],"data":[46],"because":[47],"prohibitive":[50],"cost.":[51],"In":[52],"this":[53],"paper,":[54],"we":[55,96],"propose":[56],"a":[57,84],"distributed":[58,71,94],"high-performance":[59],"parallel":[60],"implementation":[61],"BPMF":[64],"using":[65,76,80,89],"Gibbs":[66],"sampling":[67],"shared":[69],"architectures.":[72],"We":[73],"show":[74],"by":[75,88],"efficient":[77],"load":[78],"balancing":[79],"work":[81],"stealing":[82],"single":[85],"node,":[86],"asynchronous":[90],"communication":[91],"version":[95],"beat":[97],"state":[98],"art":[101],"implementations.":[102]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2617739603","counts_by_year":[{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":3},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":5},{"year":2019,"cited_by_count":4},{"year":2018,"cited_by_count":1}],"updated_date":"2024-12-11T23:18:13.377599","created_date":"2017-06-05"}