{"id":"https://openalex.org/W4309776501","doi":"https://doi.org/10.1016/j.jcp.2022.111789","title":"Neural Eikonal solver: Improving accuracy of physics-informed neural networks for solving eikonal equation in case of caustics","display_name":"Neural Eikonal solver: Improving accuracy of physics-informed neural networks for solving eikonal equation in case of caustics","publication_year":2022,"publication_date":"2022-11-21","ids":{"openalex":"https://openalex.org/W4309776501","doi":"https://doi.org/10.1016/j.jcp.2022.111789"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1016/j.jcp.2022.111789","pdf_url":null,"source":{"id":"https://openalex.org/S148709879","display_name":"Journal of Computational Physics","issn_l":"0021-9991","issn":["0021-9991","1090-2716"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["arxiv","crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2205.07989","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5088217594","display_name":"Serafim I. Grubas","orcid":"https://orcid.org/0000-0002-8852-2537"},"institutions":[{"id":"https://openalex.org/I188973947","display_name":"Novosibirsk State University","ror":"https://ror.org/04t2ss102","country_code":"RU","type":"education","lineage":["https://openalex.org/I188973947"]}],"countries":["RU"],"is_corresponding":true,"raw_author_name":"Serafim Grubas","raw_affiliation_strings":["Novosibirsk State University, Novosibirsk, Russia"],"affiliations":[{"raw_affiliation_string":"Novosibirsk State University, Novosibirsk, Russia","institution_ids":["https://openalex.org/I188973947"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5018464265","display_name":"Anton A. Duchkov","orcid":"https://orcid.org/0000-0002-7876-6685"},"institutions":[{"id":"https://openalex.org/I4210106118","display_name":"Institute of Petroleum Geology and Geophysics","ror":"https://ror.org/00y1dzm96","country_code":"RU","type":"facility","lineage":["https://openalex.org/I1313323035","https://openalex.org/I4210106118","https://openalex.org/I4210163714"]}],"countries":["RU"],"is_corresponding":false,"raw_author_name":"Anton Duchkov","raw_affiliation_strings":["Institute of Petroleum Geology and Geophysics, Novosibirsk, Russia"],"affiliations":[{"raw_affiliation_string":"Institute of Petroleum Geology and Geophysics, Novosibirsk, Russia","institution_ids":["https://openalex.org/I4210106118"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5086458662","display_name":"G. Loginov","orcid":"https://orcid.org/0000-0002-4906-5986"},"institutions":[{"id":"https://openalex.org/I4210106118","display_name":"Institute of Petroleum Geology and Geophysics","ror":"https://ror.org/00y1dzm96","country_code":"RU","type":"facility","lineage":["https://openalex.org/I1313323035","https://openalex.org/I4210106118","https://openalex.org/I4210163714"]}],"countries":["RU"],"is_corresponding":false,"raw_author_name":"Georgy Loginov","raw_affiliation_strings":["Institute of Petroleum Geology and Geophysics, Novosibirsk, Russia"],"affiliations":[{"raw_affiliation_string":"Institute of Petroleum Geology and Geophysics, Novosibirsk, Russia","institution_ids":["https://openalex.org/I4210106118"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":["https://openalex.org/A5088217594"],"corresponding_institution_ids":["https://openalex.org/I188973947"],"apc_list":{"value":3750,"currency":"USD","value_usd":3750,"provenance":"doaj"},"apc_paid":null,"fwci":1.465,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":5,"citation_normalized_percentile":{"value":0.999832,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":84,"max":86},"biblio":{"volume":"474","issue":null,"first_page":"111789","last_page":"111789"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11206","display_name":"Physics-Informed Neural Networks for Scientific Computing","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11206","display_name":"Physics-Informed Neural Networks for Scientific Computing","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10271","display_name":"Seismic Waveform Inversion in Geophysics","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1908","display_name":"Geophysics"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11801","display_name":"Advanced Techniques in Reservoir Management","score":0.9841,"subfield":{"id":"https://openalex.org/subfields/2212","display_name":"Ocean Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/fast-marching-method","display_name":"Fast marching method","score":0.77884316},{"id":"https://openalex.org/keywords/solver","display_name":"Solver","score":0.6292161},{"id":"https://openalex.org/keywords/nonlinear-systems","display_name":"Nonlinear Systems","score":0.493301}],"concepts":[{"id":"https://openalex.org/C40375134","wikidata":"https://www.wikidata.org/wiki/Q1303846","display_name":"Eikonal equation","level":2,"score":0.9409739},{"id":"https://openalex.org/C17866373","wikidata":"https://www.wikidata.org/wiki/Q5437042","display_name":"Fast marching method","level":2,"score":0.77884316},{"id":"https://openalex.org/C2778770139","wikidata":"https://www.wikidata.org/wiki/Q1966904","display_name":"Solver","level":2,"score":0.6292161},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.57542443},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.45362228},{"id":"https://openalex.org/C51544822","wikidata":"https://www.wikidata.org/wiki/Q465274","display_name":"Ordinary differential equation","level":3,"score":0.41160506},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.38158566},{"id":"https://openalex.org/C78045399","wikidata":"https://www.wikidata.org/wiki/Q11214","display_name":"Differential equation","level":2,"score":0.3783198},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.3753064},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.35079896},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.35001013},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.31707448},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.30344832},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.13860336}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1016/j.jcp.2022.111789","pdf_url":null,"source":{"id":"https://openalex.org/S148709879","display_name":"Journal of Computational Physics","issn_l":"0021-9991","issn":["0021-9991","1090-2716"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.07989","pdf_url":"https://arxiv.org/pdf/2205.07989","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.07989","pdf_url":"https://arxiv.org/pdf/2205.07989","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321912","funder_display_name":"Ministry of Education and Science of the Russian Federation","award_id":"FWZZ-2022-0017"}],"datasets":[],"versions":[],"referenced_works_count":34,"referenced_works":["https://openalex.org/W1238092070","https://openalex.org/W1609523247","https://openalex.org/W1615989357","https://openalex.org/W1966501171","https://openalex.org/W1973936672","https://openalex.org/W2049391017","https://openalex.org/W2054113582","https://openalex.org/W2074667306","https://openalex.org/W2109053453","https://openalex.org/W2113442785","https://openalex.org/W2118920711","https://openalex.org/W2137983211","https://openalex.org/W2138636713","https://openalex.org/W2474675250","https://openalex.org/W2488089998","https://openalex.org/W2738521904","https://openalex.org/W2749028154","https://openalex.org/W2899283552","https://openalex.org/W2948551291","https://openalex.org/W2962727772","https://openalex.org/W3007470329","https://openalex.org/W3014009018","https://openalex.org/W3036305972","https://openalex.org/W3043174105","https://openalex.org/W3111357769","https://openalex.org/W3154575637","https://openalex.org/W3161445736","https://openalex.org/W3200673624","https://openalex.org/W3203476646","https://openalex.org/W3207265627","https://openalex.org/W3209909540","https://openalex.org/W4230681702","https://openalex.org/W4301409532","https://openalex.org/W565353725"],"related_works":["https://openalex.org/W3083851338","https://openalex.org/W2618429653","https://openalex.org/W2474675250","https://openalex.org/W2415867404","https://openalex.org/W2348332226","https://openalex.org/W2200845428","https://openalex.org/W2052629386","https://openalex.org/W2050394778","https://openalex.org/W2022474827","https://openalex.org/W1970732967"],"abstract_inverted_index":{"The":[0,185,196],"concept":[1,26],"of":[2,37,50,66,81,160,188,232],"physics-informed":[3],"neural":[4,87],"networks":[5,88],"has":[6],"become":[7],"a":[8,21,116],"useful":[9,221],"tool":[10],"for":[11,102,115,124],"solving":[12,82,103],"differential":[13],"equations":[14],"due":[15,68],"to":[16,27,69,89],"its":[17],"flexibility.":[18],"There":[19],"are":[20,229],"few":[22],"approaches":[23],"using":[24,86],"this":[25,75],"solve":[28],"the":[29,34,48,51,56,70,79,83,91,96,104,111,120,157,164,193,200,205],"eikonal":[30,52,84,106],"equation":[31,85,107],"which":[32,133],"describes":[33],"first-arrival":[35],"traveltimes":[36],"acoustic":[38],"and":[39,64,170,180,241],"elastic":[40],"waves":[41],"in":[42,62,108,136,222],"smooth":[43],"heterogeneous":[44],"velocity":[45,57,137],"models.":[46],"However,":[47],"challenge":[49],"is":[53,114,123,190],"exacerbated":[54],"by":[55],"models":[58,138],"producing":[59,139],"caustics,":[60],"resulting":[61],"instabilities":[63],"deterioration":[65],"accuracy":[67,211],"non-smooth":[71],"solution":[72],"behaviour.":[73],"In":[74,152],"paper,":[76],"we":[77],"revisit":[78],"problem":[80,113,122],"tackle":[90],"caustic":[92],"pathologies.":[93],"We":[94,129],"introduce":[95],"novel":[97],"Neural":[98],"Eikonal":[99],"Solver":[100],"(NES)":[101],"isotropic":[105],"two":[109],"formulations:":[110],"one-point":[112,197],"fixed":[117],"source":[118],"location;":[119],"two-point":[121,206],"an":[125,214],"arbitrary":[126],"source-receiver":[127,233],"pair.":[128],"present":[130],"several":[131],"techniques":[132],"provide":[134],"stability":[135],"caustics:":[140],"improved":[141],"factorization;":[142],"non-symmetric":[143],"loss":[144],"function":[145],"based":[146],"on":[147],"Hamiltonian;":[148],"gaussian":[149],"activation;":[150],"symmetrization.":[151],"our":[153],"tests,":[154],"NES":[155,189,198,207],"showed":[156],"relative-mean-absolute":[158],"error":[159],"about":[161],"0.2-0.4%":[162],"from":[163],"second-order":[165],"factored":[166],"Fast":[167,194],"Marching":[168],"Method,":[169],"outperformed":[171],"existing":[172],"neural-network":[173],"solvers":[174],"giving":[175],"10-60":[176],"times":[177,182],"lower":[178,210],"errors":[179],"2-30":[181],"faster":[183],"training.":[184],"inference":[186],"time":[187],"comparable":[191],"with":[192],"Marching.":[195],"provides":[199,208],"most":[201],"accurate":[202],"solution,":[203],"whereas":[204],"slightly":[209],"but":[212],"gives":[213],"extremely":[215],"compact":[216],"representation.":[217],"It":[218],"can":[219],"be":[220],"various":[223],"seismic":[224],"applications":[225],"where":[226],"massive":[227],"computations":[228],"required":[230],"(millions":[231],"pairs):":[234],"ray":[235],"modeling,":[236],"traveltime":[237],"tomography,":[238],"hypocenter":[239],"localization,":[240],"Kirchhoff":[242],"migration.":[243]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4309776501","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":2}],"updated_date":"2024-10-16T21:20:19.752372","created_date":"2022-11-29"}