iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1016/J.ESWA.2023.120189
{"id":"https://openalex.org/W4366779481","doi":"https://doi.org/10.1016/j.eswa.2023.120189","title":"Smooth and semi-smooth pinball twin support vector machine","display_name":"Smooth and semi-smooth pinball twin support vector machine","publication_year":2023,"publication_date":"2023-04-23","ids":{"openalex":"https://openalex.org/W4366779481","doi":"https://doi.org/10.1016/j.eswa.2023.120189"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1016/j.eswa.2023.120189","pdf_url":null,"source":{"id":"https://openalex.org/S13144211","display_name":"Expert Systems with Applications","issn_l":"0957-4174","issn":["0957-4174","1873-6793"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100630692","display_name":"Huiru Wang","orcid":"https://orcid.org/0000-0002-3579-0028"},"institutions":[{"id":"https://openalex.org/I31683504","display_name":"Beijing Forestry University","ror":"https://ror.org/04xv2pc41","country_code":"CN","type":"education","lineage":["https://openalex.org/I1327237609","https://openalex.org/I31683504","https://openalex.org/I4210127390"]}],"countries":["CN"],"is_corresponding":true,"raw_author_name":"Huiru Wang","raw_affiliation_strings":["Department of Mathematics, College of Science, Beijing Forestry University, No. 35 Qinghua East Road, 100083 Haidian, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Department of Mathematics, College of Science, Beijing Forestry University, No. 35 Qinghua East Road, 100083 Haidian, Beijing, China","institution_ids":["https://openalex.org/I31683504"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5041156933","display_name":"Yixuan Liu","orcid":"https://orcid.org/0000-0002-7137-0784"},"institutions":[{"id":"https://openalex.org/I31683504","display_name":"Beijing Forestry University","ror":"https://ror.org/04xv2pc41","country_code":"CN","type":"education","lineage":["https://openalex.org/I1327237609","https://openalex.org/I31683504","https://openalex.org/I4210127390"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yixuan Liu","raw_affiliation_strings":["Department of Mathematics, College of Science, Beijing Forestry University, No. 35 Qinghua East Road, 100083 Haidian, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Department of Mathematics, College of Science, Beijing Forestry University, No. 35 Qinghua East Road, 100083 Haidian, Beijing, China","institution_ids":["https://openalex.org/I31683504"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5082519820","display_name":"Siyuan Zhang","orcid":"https://orcid.org/0009-0009-6986-920X"},"institutions":[{"id":"https://openalex.org/I52158045","display_name":"China Agricultural University","ror":"https://ror.org/04v3ywz14","country_code":"CN","type":"education","lineage":["https://openalex.org/I52158045"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Siyuan Zhang","raw_affiliation_strings":["College of Information and Electrical Engineering, China Agricultural University, No. 17 Qinghua East Road, 100083 Haidian, Beijing, China"],"affiliations":[{"raw_affiliation_string":"College of Information and Electrical Engineering, China Agricultural University, No. 17 Qinghua East Road, 100083 Haidian, Beijing, China","institution_ids":["https://openalex.org/I52158045"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":["https://openalex.org/A5100630692"],"corresponding_institution_ids":["https://openalex.org/I31683504"],"apc_list":{"value":3220,"currency":"USD","value_usd":3220,"provenance":"doaj"},"apc_paid":null,"fwci":1.945,"has_fulltext":false,"cited_by_count":6,"citation_normalized_percentile":{"value":0.684364,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":93,"max":95},"biblio":{"volume":"226","issue":null,"first_page":"120189","last_page":"120189"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10057","display_name":"Face Recognition and Dimensionality Reduction Techniques","score":0.9968,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10057","display_name":"Face Recognition and Dimensionality Reduction Techniques","score":0.9968,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10640","display_name":"Chemometrics in Analytical Chemistry and Food Technology","score":0.9882,"subfield":{"id":"https://openalex.org/subfields/1602","display_name":"Analytical Chemistry"},"field":{"id":"https://openalex.org/fields/16","display_name":"Chemistry"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12676","display_name":"Theory and Applications of Extreme Learning Machines","score":0.9849,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/hyperplane","display_name":"Hyperplane","score":0.5812947},{"id":"https://openalex.org/keywords/support-vector-machines","display_name":"Support Vector Machines","score":0.570331},{"id":"https://openalex.org/keywords/binary-classification","display_name":"Binary classification","score":0.49578533}],"concepts":[{"id":"https://openalex.org/C68693459","wikidata":"https://www.wikidata.org/wiki/Q657586","display_name":"Hyperplane","level":2,"score":0.5812947},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.56528634},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.52596164},{"id":"https://openalex.org/C79337645","wikidata":"https://www.wikidata.org/wiki/Q779824","display_name":"Outlier","level":2,"score":0.5091452},{"id":"https://openalex.org/C66905080","wikidata":"https://www.wikidata.org/wiki/Q17005494","display_name":"Binary classification","level":3,"score":0.49578533},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.48705366},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.44135177},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.4395305},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.37099776},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1016/j.eswa.2023.120189","pdf_url":null,"source":{"id":"https://openalex.org/S13144211","display_name":"Expert Systems with Applications","issn_l":"0957-4174","issn":["0957-4174","1873-6793"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320322919","funder_display_name":"Natural Science Foundation of Beijing Municipality","award_id":"6232031"},{"funder":"https://openalex.org/F4320335787","funder_display_name":"Fundamental Research Funds for the Central Universities","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":33,"referenced_works":["https://openalex.org/W1952030594","https://openalex.org/W2038445713","https://openalex.org/W2090089568","https://openalex.org/W2132425109","https://openalex.org/W2136627475","https://openalex.org/W2170860445","https://openalex.org/W2343106965","https://openalex.org/W2494415546","https://openalex.org/W2594577230","https://openalex.org/W2605475006","https://openalex.org/W2915184413","https://openalex.org/W2918619047","https://openalex.org/W2940511651","https://openalex.org/W3047949561","https://openalex.org/W3095224619","https://openalex.org/W3119534679","https://openalex.org/W3123060271","https://openalex.org/W3136964515","https://openalex.org/W3154818504","https://openalex.org/W3176045161","https://openalex.org/W4205821229","https://openalex.org/W4206686222","https://openalex.org/W4220914980","https://openalex.org/W4223541744","https://openalex.org/W4225501970","https://openalex.org/W4229031492","https://openalex.org/W4229455692","https://openalex.org/W4280571718","https://openalex.org/W4281641105","https://openalex.org/W4306318661","https://openalex.org/W4315798480","https://openalex.org/W4321793224","https://openalex.org/W4323269198"],"related_works":["https://openalex.org/W3121830895","https://openalex.org/W2900686919","https://openalex.org/W2747895175","https://openalex.org/W2383335574","https://openalex.org/W2348510359","https://openalex.org/W233771590","https://openalex.org/W2161440356","https://openalex.org/W2127616648","https://openalex.org/W2047800684","https://openalex.org/W1489507320"],"abstract_inverted_index":{"In":[0,143],"this":[1,128],"paper,":[2],"we":[3,79],"firstly":[4],"propose":[5,81],"a":[6,21,82,124,153],"new":[7],"binary":[8],"classifier":[9],"termed":[10],"as":[11],"smooth":[12,22],"pinball":[13,27,85,93],"twin":[14,94],"support":[15,95],"vector":[16,96],"machine":[17,97],"(SP-TSVM)":[18],"based":[19],"on":[20,160],"and":[23,88,104,133],"everywhere":[24],"differentiable":[25],"L2-norm":[26,84],"loss.":[28],"It":[29,57,99],"is":[30,44,123],"closely":[31],"related":[32],"to":[33,47,140],"the":[34,38,54,61,68,90,106,114,120,131,147,150,165],"quantile":[35],"distance,":[36],"making":[37],"model":[39,122,151],"more":[40],"robust.":[41],"The":[42],"SP-TSVM":[43,74],"less":[45],"sensitive":[46],"feature":[48],"noise,":[49],"especially":[50],"noise":[51],"located":[52],"near":[53],"decision":[55],"hyperplane.":[56],"not":[58,76,100],"only":[59,101],"follows":[60],"maximal":[62],"margin":[63],"principle,":[64],"but":[65,110],"also":[66,111],"avoids":[67],"matrix":[69],"inverse":[70],"operation.":[71],"Secondly,":[72],"since":[73],"does":[75],"have":[77],"sparsity,":[78],"further":[80],"semi-smooth":[83,92],"loss":[86],"function":[87],"establish":[89],"model:":[91],"(SSP-TSVM).":[98],"has":[102],"sparsity":[103],"inherits":[105],"advantages":[107],"of":[108,117,146,155,167],"SP-TSVM,":[109],"can":[112],"suppress":[113],"negative":[115],"effects":[116],"outliers.":[118],"Since":[119],"SSP-TSVM":[121],"non-convex":[125],"optimization":[126,138],"problem,":[127],"paper":[129],"adopts":[130],"convenient":[132],"easy-to-use":[134],"concave\u2013convex":[135],"procedure":[136],"(CCCP)":[137],"method":[139],"solve":[141],"it.":[142],"each":[144],"step":[145],"iterative":[148],"process,":[149],"solves":[152],"series":[154],"SP-TSVM-like":[156],"problems.":[157],"Experimental":[158],"results":[159],"19":[161],"data":[162],"sets":[163],"indicate":[164],"validity":[166],"our":[168],"proposed":[169],"models.":[170]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4366779481","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":3}],"updated_date":"2024-11-02T13:35:39.281265","created_date":"2023-04-25"}