{"id":"https://openalex.org/W2988141759","doi":"https://doi.org/10.1016/j.bspc.2019.101678","title":"Deep neural network with generative adversarial networks pre-training for brain tumor classification based on MR images","display_name":"Deep neural network with generative adversarial networks pre-training for brain tumor classification based on MR images","publication_year":2019,"publication_date":"2019-11-07","ids":{"openalex":"https://openalex.org/W2988141759","doi":"https://doi.org/10.1016/j.bspc.2019.101678","mag":"2988141759"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1016/j.bspc.2019.101678","pdf_url":null,"source":{"id":"https://openalex.org/S8427965","display_name":"Biomedical Signal Processing and Control","issn_l":"1746-8094","issn":["1746-8094","1746-8108"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5033333265","display_name":"Navid Ghassemi","orcid":"https://orcid.org/0000-0002-6537-0438"},"institutions":[{"id":"https://openalex.org/I86958956","display_name":"Ferdowsi University of Mashhad","ror":"https://ror.org/00g6ka752","country_code":"IR","type":"education","lineage":["https://openalex.org/I86958956"]}],"countries":["IR"],"is_corresponding":false,"raw_author_name":"Navid Ghassemi","raw_affiliation_strings":["Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran"],"affiliations":[{"raw_affiliation_string":"Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran","institution_ids":["https://openalex.org/I86958956"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5029791697","display_name":"Afshin Shoeibi","orcid":"https://orcid.org/0000-0003-0635-6799"},"institutions":[{"id":"https://openalex.org/I86958956","display_name":"Ferdowsi University of Mashhad","ror":"https://ror.org/00g6ka752","country_code":"IR","type":"education","lineage":["https://openalex.org/I86958956"]}],"countries":["IR"],"is_corresponding":false,"raw_author_name":"Afshin Shoeibi","raw_affiliation_strings":["Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran","Dependable Distributed Embedded System (DDEmS) Labratory, Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran"],"affiliations":[{"raw_affiliation_string":"Dependable Distributed Embedded System (DDEmS) Labratory, Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran","institution_ids":["https://openalex.org/I86958956"]},{"raw_affiliation_string":"Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran","institution_ids":["https://openalex.org/I86958956"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5019671134","display_name":"Modjtaba Rouhani","orcid":"https://orcid.org/0000-0003-2423-6715"},"institutions":[{"id":"https://openalex.org/I86958956","display_name":"Ferdowsi University of Mashhad","ror":"https://ror.org/00g6ka752","country_code":"IR","type":"education","lineage":["https://openalex.org/I86958956"]}],"countries":["IR"],"is_corresponding":true,"raw_author_name":"Modjtaba Rouhani","raw_affiliation_strings":["Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran"],"affiliations":[{"raw_affiliation_string":"Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran","institution_ids":["https://openalex.org/I86958956"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5019671134"],"corresponding_institution_ids":["https://openalex.org/I86958956"],"apc_list":{"value":2420,"currency":"USD","value_usd":2420,"provenance":"doaj"},"apc_paid":null,"fwci":24.633,"has_fulltext":false,"cited_by_count":312,"citation_normalized_percentile":{"value":0.99981,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":99,"max":100},"biblio":{"volume":"57","issue":null,"first_page":"101678","last_page":"101678"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12702","display_name":"Classification of Brain Tumor Type and Grade","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/2808","display_name":"Neurology"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},"topics":[{"id":"https://openalex.org/T12702","display_name":"Classification of Brain Tumor Type and Grade","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/2808","display_name":"Neurology"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T10862","display_name":"Deep Learning in Medical Image Analysis","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12859","display_name":"Advanced Techniques in Bioimage Analysis and Microscopy","score":0.998,"subfield":{"id":"https://openalex.org/subfields/1304","display_name":"Biophysics"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/discriminator","display_name":"Discriminator","score":0.86807597},{"id":"https://openalex.org/keywords/generative-adversarial-network","display_name":"Generative adversarial network","score":0.5409812},{"id":"https://openalex.org/keywords/transfer-learning","display_name":"Transfer Learning","score":0.537293},{"id":"https://openalex.org/keywords/neuronal-morphology","display_name":"Neuronal Morphology","score":0.523871},{"id":"https://openalex.org/keywords/deep-learning","display_name":"Deep Learning","score":0.521885},{"id":"https://openalex.org/keywords/image-segmentation","display_name":"Image Segmentation","score":0.51888},{"id":"https://openalex.org/keywords/phenotypic-profiling","display_name":"Phenotypic Profiling","score":0.514319},{"id":"https://openalex.org/keywords/contextual-image-classification","display_name":"Contextual image classification","score":0.49384576},{"id":"https://openalex.org/keywords/brain-tumor","display_name":"Brain tumor","score":0.4777407}],"concepts":[{"id":"https://openalex.org/C2779803651","wikidata":"https://www.wikidata.org/wiki/Q5282088","display_name":"Discriminator","level":3,"score":0.86807597},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.8149174},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7642822},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.6875013},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.6678472},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.6385936},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.5988736},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5633383},{"id":"https://openalex.org/C2988773926","wikidata":"https://www.wikidata.org/wiki/Q25104379","display_name":"Generative adversarial network","level":3,"score":0.5409812},{"id":"https://openalex.org/C75294576","wikidata":"https://www.wikidata.org/wiki/Q5165192","display_name":"Contextual image classification","level":3,"score":0.49384576},{"id":"https://openalex.org/C2779130545","wikidata":"https://www.wikidata.org/wiki/Q233309","display_name":"Brain tumor","level":2,"score":0.4777407},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.29351643},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.0},{"id":"https://openalex.org/C142724271","wikidata":"https://www.wikidata.org/wiki/Q7208","display_name":"Pathology","level":1,"score":0.0},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C94915269","wikidata":"https://www.wikidata.org/wiki/Q1834857","display_name":"Detector","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1016/j.bspc.2019.101678","pdf_url":null,"source":{"id":"https://openalex.org/S8427965","display_name":"Biomedical Signal Processing and Control","issn_l":"1746-8094","issn":["1746-8094","1746-8108"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities","score":0.75}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":57,"referenced_works":["https://openalex.org/W1522301498","https://openalex.org/W1572827835","https://openalex.org/W1686810756","https://openalex.org/W1836465849","https://openalex.org/W1995875735","https://openalex.org/W2095705004","https://openalex.org/W2099471712","https://openalex.org/W2124260444","https://openalex.org/W2146502635","https://openalex.org/W2163605009","https://openalex.org/W2173520492","https://openalex.org/W2182098131","https://openalex.org/W2194775991","https://openalex.org/W2302086703","https://openalex.org/W2366536035","https://openalex.org/W2544747291","https://openalex.org/W2557283755","https://openalex.org/W2577946330","https://openalex.org/W2581082771","https://openalex.org/W2592929672","https://openalex.org/W2593463961","https://openalex.org/W2596470483","https://openalex.org/W2612690371","https://openalex.org/W2618530766","https://openalex.org/W2621028221","https://openalex.org/W2731899572","https://openalex.org/W2766527293","https://openalex.org/W2790913410","https://openalex.org/W2802189604","https://openalex.org/W2804078698","https://openalex.org/W2810138651","https://openalex.org/W2891810238","https://openalex.org/W2893483035","https://openalex.org/W2897188827","https://openalex.org/W2899333919","https://openalex.org/W2900954917","https://openalex.org/W2904208441","https://openalex.org/W2914190581","https://openalex.org/W2914193281","https://openalex.org/W2949117887","https://openalex.org/W2950893734","https://openalex.org/W2953141406","https://openalex.org/W2963356165","https://openalex.org/W2963384288","https://openalex.org/W2963684088","https://openalex.org/W3037567775","https://openalex.org/W3105282616","https://openalex.org/W3177525997","https://openalex.org/W4211003749","https://openalex.org/W4239847819","https://openalex.org/W4245195295","https://openalex.org/W4285784536","https://openalex.org/W4294643831","https://openalex.org/W4297805688","https://openalex.org/W4320013936","https://openalex.org/W4320515908","https://openalex.org/W6908809"],"related_works":["https://openalex.org/W4322709305","https://openalex.org/W4308928038","https://openalex.org/W4200430540","https://openalex.org/W3217069185","https://openalex.org/W3141413246","https://openalex.org/W3049340819","https://openalex.org/W3002487853","https://openalex.org/W2964218010","https://openalex.org/W2808862658","https://openalex.org/W2596763562"],"abstract_inverted_index":{"In":[0],"this":[1],"paper,":[2],"a":[3,24,27,69,92,95,117],"new":[4],"deep":[5,17,64,77],"learning":[6],"method":[7,122],"for":[8],"tumor":[9,74,150,160],"classification":[10],"in":[11,26,50],"MR":[12,36,48,134],"images":[13,37,49,135,140],"is":[14,20,66,123,165],"presented.":[15],"A":[16],"neural":[18,78],"network":[19,30,65,79,113],"first":[21],"pre-trained":[22],"as":[23,68,91,102,178],"discriminator":[25,93],"generative":[28],"adversarial":[29],"(GAN)":[31],"on":[32,116,144],"different":[33,148],"datasets":[34],"of":[35,47,94,131,171],"to":[38,43,71,125,167,180],"extract":[39],"robust":[40],"features":[41],"and":[42,61,84,107,109,158],"learn":[44],"the":[45,55,62,112,169,175],"structure":[46],"its":[51],"convolutional":[52],"layers.":[53],"Then":[54],"fully":[56],"connected":[57],"layers":[58,83],"are":[59],"replaced":[60],"whole":[63],"trained":[67],"classifier":[70,80],"distinguish":[72],"three":[73,147],"classes.":[75],"The":[76],"has":[81],"six":[82],"about":[85],"1.7":[86],"million":[87],"weight":[88],"parameters.":[89],"Pre-training":[90],"GAN":[96],"together":[97],"with":[98,146],"other":[99],"techniques":[100],"such":[101],"data":[103,128],"augmentations":[104],"(image":[105],"rotation":[106],"mirroring)":[108],"dropout":[110],"prevent":[111],"from":[114,136,141],"overtraining":[115],"relatively":[118],"small":[119],"dataset.":[120],"This":[121],"applied":[124],"an":[126],"MRI":[127],"set":[129],"consists":[130],"3064":[132],"T1-CE":[133],"233":[137],"patients,":[138],"13":[139],"each":[142],"patient":[143],"average,":[145],"brain":[149],"types:":[151],"meningioma":[152],"(708":[153],"images),":[154,157],"glioma":[155],"(1426":[156],"pituitary":[159],"(930":[161],"images).":[162],"5-Fold":[163],"cross-validation":[164],"used":[166],"evaluate":[168],"performance":[170],"overall":[172],"design,":[173],"achieving":[174],"highest":[176],"accuracy":[177],"compared":[179],"state-of-art":[181],"methods.":[182]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2988141759","counts_by_year":[{"year":2024,"cited_by_count":56},{"year":2023,"cited_by_count":89},{"year":2022,"cited_by_count":86},{"year":2021,"cited_by_count":58},{"year":2020,"cited_by_count":18},{"year":2019,"cited_by_count":1}],"updated_date":"2024-10-19T18:03:06.303113","created_date":"2019-11-22"}