iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1007/S10278-013-9620-9
{"id":"https://openalex.org/W2066316458","doi":"https://doi.org/10.1007/s10278-013-9620-9","title":"Support Vector Machine Model for Diagnosing Pneumoconiosis Based on Wavelet Texture Features of Digital Chest Radiographs","display_name":"Support Vector Machine Model for Diagnosing Pneumoconiosis Based on Wavelet Texture Features of Digital Chest Radiographs","publication_year":2013,"publication_date":"2013-07-08","ids":{"openalex":"https://openalex.org/W2066316458","doi":"https://doi.org/10.1007/s10278-013-9620-9","mag":"2066316458","pmid":"https://pubmed.ncbi.nlm.nih.gov/23836078","pmcid":"https://www.ncbi.nlm.nih.gov/pmc/articles/3903963"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/s10278-013-9620-9","pdf_url":null,"source":{"id":"https://openalex.org/S62275304","display_name":"Journal of Digital Imaging","issn_l":"0897-1889","issn":["0897-1889","1618-727X"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://europepmc.org/articles/pmc3903963?pdf=render","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5086556319","display_name":"Biyun Zhu","orcid":"https://orcid.org/0009-0006-0608-5262"},"institutions":[{"id":"https://openalex.org/I183519381","display_name":"Capital Medical University","ror":"https://ror.org/013xs5b60","country_code":"CN","type":"education","lineage":["https://openalex.org/I183519381"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Biyun Zhu","raw_affiliation_strings":["School of Biomedical Engineering, Capital Medical University, Beijing, China;"],"affiliations":[{"raw_affiliation_string":"School of Biomedical Engineering, Capital Medical University, Beijing, China;","institution_ids":["https://openalex.org/I183519381"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5060832996","display_name":"Hui Chen","orcid":"https://orcid.org/0000-0002-0048-0193"},"institutions":[{"id":"https://openalex.org/I183519381","display_name":"Capital Medical University","ror":"https://ror.org/013xs5b60","country_code":"CN","type":"education","lineage":["https://openalex.org/I183519381"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hui Chen","raw_affiliation_strings":["School of Biomedical Engineering, Capital Medical University, Beijing, China;"],"affiliations":[{"raw_affiliation_string":"School of Biomedical Engineering, Capital Medical University, Beijing, China;","institution_ids":["https://openalex.org/I183519381"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5087043921","display_name":"Budong Chen","orcid":"https://orcid.org/0000-0002-4412-1387"},"institutions":[{"id":"https://openalex.org/I4210147433","display_name":"Beijing Friendship Hospital","ror":"https://ror.org/053qy4437","country_code":"CN","type":"healthcare","lineage":["https://openalex.org/I4210147433"]},{"id":"https://openalex.org/I183519381","display_name":"Capital Medical University","ror":"https://ror.org/013xs5b60","country_code":"CN","type":"education","lineage":["https://openalex.org/I183519381"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Budong Chen","raw_affiliation_strings":["Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China."],"affiliations":[{"raw_affiliation_string":"Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.","institution_ids":["https://openalex.org/I4210147433","https://openalex.org/I183519381"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5047311207","display_name":"Yan Xu","orcid":"https://orcid.org/0000-0002-5496-402X"},"institutions":[{"id":"https://openalex.org/I4210147433","display_name":"Beijing Friendship Hospital","ror":"https://ror.org/053qy4437","country_code":"CN","type":"healthcare","lineage":["https://openalex.org/I4210147433"]},{"id":"https://openalex.org/I183519381","display_name":"Capital Medical University","ror":"https://ror.org/013xs5b60","country_code":"CN","type":"education","lineage":["https://openalex.org/I183519381"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yan Xu","raw_affiliation_strings":["Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China."],"affiliations":[{"raw_affiliation_string":"Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.","institution_ids":["https://openalex.org/I4210147433","https://openalex.org/I183519381"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100736889","display_name":"Kuan Zhang","orcid":"https://orcid.org/0000-0003-4195-1198"},"institutions":[{"id":"https://openalex.org/I183519381","display_name":"Capital Medical University","ror":"https://ror.org/013xs5b60","country_code":"CN","type":"education","lineage":["https://openalex.org/I183519381"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Kuan Zhang","raw_affiliation_strings":["School of Biomedical Engineering, Capital Medical University, Beijing, China;"],"affiliations":[{"raw_affiliation_string":"School of Biomedical Engineering, Capital Medical University, Beijing, China;","institution_ids":["https://openalex.org/I183519381"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":3190,"currency":"EUR","value_usd":4190,"provenance":"doaj"},"apc_paid":null,"fwci":0.255,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":19,"citation_normalized_percentile":{"value":0.818241,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":90,"max":91},"biblio":{"volume":"27","issue":"1","first_page":"90","last_page":"97"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11775","display_name":"Applications of Deep Learning in Medical Imaging","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T11775","display_name":"Applications of Deep Learning in Medical Imaging","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11396","display_name":"Machine Learning in Healthcare and Medicine","score":0.996,"subfield":{"id":"https://openalex.org/subfields/3605","display_name":"Health Information Management"},"field":{"id":"https://openalex.org/fields/36","display_name":"Health Professions"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10202","display_name":"Diagnosis and Treatment of Lung Cancer","score":0.9816,"subfield":{"id":"https://openalex.org/subfields/2740","display_name":"Pulmonary and Respiratory Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/support-vector-machines","display_name":"Support Vector Machines","score":0.630955},{"id":"https://openalex.org/keywords/pneumonia-detection","display_name":"Pneumonia Detection","score":0.612084},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.55690604},{"id":"https://openalex.org/keywords/pneumoconiosis","display_name":"Pneumoconiosis","score":0.5101676},{"id":"https://openalex.org/keywords/feature-selection","display_name":"Feature Selection","score":0.510003},{"id":"https://openalex.org/keywords/heart-disease-prediction","display_name":"Heart Disease Prediction","score":0.505992},{"id":"https://openalex.org/keywords/image-based-diagnosis","display_name":"Image-Based Diagnosis","score":0.504343}],"concepts":[{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.8151823},{"id":"https://openalex.org/C58471807","wikidata":"https://www.wikidata.org/wiki/Q327120","display_name":"Receiver operating characteristic","level":2,"score":0.7299749},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6738646},{"id":"https://openalex.org/C160446489","wikidata":"https://www.wikidata.org/wiki/Q7226642","display_name":"Polynomial kernel","level":4,"score":0.6062847},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.59549826},{"id":"https://openalex.org/C75866337","wikidata":"https://www.wikidata.org/wiki/Q7280263","display_name":"Radial basis function kernel","level":4,"score":0.5738286},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.55690604},{"id":"https://openalex.org/C2776715762","wikidata":"https://www.wikidata.org/wiki/Q651223","display_name":"Pneumoconiosis","level":2,"score":0.5101676},{"id":"https://openalex.org/C47432892","wikidata":"https://www.wikidata.org/wiki/Q831390","display_name":"Wavelet","level":2,"score":0.44952503},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.43492064},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.43057287},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.4032492},{"id":"https://openalex.org/C122280245","wikidata":"https://www.wikidata.org/wiki/Q620622","display_name":"Kernel method","level":3,"score":0.29564142},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.15281594},{"id":"https://openalex.org/C142724271","wikidata":"https://www.wikidata.org/wiki/Q7208","display_name":"Pathology","level":1,"score":0.12246111},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0}],"mesh":[{"descriptor_ui":"D011009","descriptor_name":"Pneumoconiosis","qualifier_ui":"Q000000981","qualifier_name":"diagnostic imaging","is_major_topic":true},{"descriptor_ui":"D011856","descriptor_name":"Radiographic Image Enhancement","qualifier_ui":"Q000379","qualifier_name":"methods","is_major_topic":true},{"descriptor_ui":"D011857","descriptor_name":"Radiographic Image Interpretation, Computer-Assisted","qualifier_ui":"Q000379","qualifier_name":"methods","is_major_topic":true},{"descriptor_ui":"D013902","descriptor_name":"Radiography, Thoracic","qualifier_ui":"Q000379","qualifier_name":"methods","is_major_topic":true},{"descriptor_ui":"D060388","descriptor_name":"Support Vector Machine","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D019540","descriptor_name":"Area Under Curve","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D006801","descriptor_name":"Humans","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D008168","descriptor_name":"Lung","qualifier_ui":"Q000000981","qualifier_name":"diagnostic imaging","is_major_topic":false},{"descriptor_ui":"D008168","descriptor_name":"Lung","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D008297","descriptor_name":"Male","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D008875","descriptor_name":"Middle Aged","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D011009","descriptor_name":"Pneumoconiosis","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D012372","descriptor_name":"ROC Curve","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D011856","descriptor_name":"Radiographic Image Enhancement","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D011857","descriptor_name":"Radiographic Image Interpretation, Computer-Assisted","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D013902","descriptor_name":"Radiography, Thoracic","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D015203","descriptor_name":"Reproducibility of Results","qualifier_ui":"","qualifier_name":null,"is_major_topic":false}],"locations_count":4,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/s10278-013-9620-9","pdf_url":null,"source":{"id":"https://openalex.org/S62275304","display_name":"Journal of Digital Imaging","issn_l":"0897-1889","issn":["0897-1889","1618-727X"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://europepmc.org/articles/pmc3903963","pdf_url":"https://europepmc.org/articles/pmc3903963?pdf=render","source":{"id":"https://openalex.org/S4306400806","display_name":"Europe PMC (PubMed Central)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1303153112","host_organization_name":"European Bioinformatics Institute","host_organization_lineage":["https://openalex.org/I1303153112"],"host_organization_lineage_names":["European Bioinformatics Institute"],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3903963","pdf_url":null,"source":{"id":"https://openalex.org/S2764455111","display_name":"PubMed Central","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/23836078","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://europepmc.org/articles/pmc3903963","pdf_url":"https://europepmc.org/articles/pmc3903963?pdf=render","source":{"id":"https://openalex.org/S4306400806","display_name":"Europe PMC (PubMed Central)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1303153112","host_organization_name":"European Bioinformatics Institute","host_organization_lineage":["https://openalex.org/I1303153112"],"host_organization_lineage_names":["European Bioinformatics Institute"],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/10","score":0.56,"display_name":"Reduced inequalities"},{"id":"https://metadata.un.org/sdg/16","score":0.42,"display_name":"Peace, justice, and strong institutions"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":33,"referenced_works":["https://openalex.org/W110966172","https://openalex.org/W1480376833","https://openalex.org/W1510073064","https://openalex.org/W1565050238","https://openalex.org/W1674281100","https://openalex.org/W1965468410","https://openalex.org/W1965697011","https://openalex.org/W1970785481","https://openalex.org/W1971076990","https://openalex.org/W1975460616","https://openalex.org/W1981546653","https://openalex.org/W1982623886","https://openalex.org/W1983024255","https://openalex.org/W1987359558","https://openalex.org/W1997458394","https://openalex.org/W2002830978","https://openalex.org/W2017066662","https://openalex.org/W2022894635","https://openalex.org/W2041352917","https://openalex.org/W2057148167","https://openalex.org/W2070552961","https://openalex.org/W2089918690","https://openalex.org/W2138205176","https://openalex.org/W2140190241","https://openalex.org/W2145343783","https://openalex.org/W2147512607","https://openalex.org/W2149706766","https://openalex.org/W2161349318","https://openalex.org/W2186428165","https://openalex.org/W2787894218","https://openalex.org/W4213283310","https://openalex.org/W4285719527","https://openalex.org/W82946689"],"related_works":["https://openalex.org/W4389428786","https://openalex.org/W3123056048","https://openalex.org/W3118942106","https://openalex.org/W3100948281","https://openalex.org/W3095395190","https://openalex.org/W2974741803","https://openalex.org/W2420851703","https://openalex.org/W2096302783","https://openalex.org/W2095626363","https://openalex.org/W1603091392"],"abstract_inverted_index":{"This":[0],"study":[1],"aims":[2],"to":[3,17,79],"explore":[4],"the":[5,20,39,76,96,104,113,153,170,178,182,249,254,266,271],"classification":[6],"ability":[7],"of":[8,25,44,75,84,89,95,107,197,219],"decision":[9],"trees":[10],"(DTs)":[11],"and":[12,28,48,54,62,103,130,144,157,161,212,232],"support":[13],"vector":[14],"machines":[15],"(SVMs)":[16],"discriminate":[18],"between":[19],"digital":[21,285],"chest":[22,286],"radiographs":[23],"(DRs)":[24],"pneumoconiosis":[26,282],"patients":[27,50],"control":[29],"subjects.":[30],"Twenty-eight":[31],"wavelet-based":[32],"energy":[33],"texture":[34,77,180,268],"features":[35,78,269],"were":[36,68,98,110,140],"calculated":[37],"at":[38],"lung":[40],"fields":[41],"on":[42,177,248,284],"DRs":[43],"85":[45],"healthy":[46,86],"controls":[47],"40":[49],"with":[51,59,64,72,92,100,184,193,203,216,243],"stage":[52,55],"I":[53],"II":[56],"pneumoconiosis.":[57,93],"DTs":[58],"algorithm":[60,133],"C5.0":[61],"SVMs":[63,202],"four":[65],"different":[66],"kernels":[67],"trained":[69],"by":[70,112],"samples":[71],"two":[73],"combinations":[74],"classify":[80],"a":[81,85,90,125,185,189,204,207,213,244,277],"DR":[82],"as":[83],"subject":[87],"or":[88,270],"patient":[91],"All":[94],"models":[97,261],"developed":[99],"fivefold":[101],"cross-validation,":[102],"final":[105],"performances":[106],"each":[108],"model":[109,242,275],"compared":[111],"area":[114],"under":[115,136],"receiver":[116],"operating":[117],"characteristic":[118],"(ROC)":[119],"curve.":[120],"For":[121],"both":[122],"SVM":[123,183,241],"(with":[124,132],"radial":[126,208],"basis":[127,209],"function":[128,210],"kernel)":[129],"DT":[131],"C5.0),":[134],"areas":[135],"ROC":[137],"curves":[138],"(AUCs)":[139],"0.94":[141],"\u00b1":[142,146,159,163,199,221,227,234],"0.02":[143,160,200,222,228],"0.86":[145],"0.04":[147,164],"(P":[148,165,223,229,236],"=":[149,166,224,230,237],"0.02)":[150],"when":[151,168,262],"using":[152,169,263],"full":[154],"feature":[155,172,251],"set":[156,252],"0.95":[158,226],"0.88":[162],"0.05)":[167],"selected":[171,179,250,272],"set,":[173],"respectively.":[174,239],"When":[175],"built":[176,247],"features,":[181],"polynomial":[186,245],"kernel":[187,211,215,246],"showed":[188,253],"higher":[190],"diagnostic":[191,256],"performance":[192,257],"an":[194],"AUC":[195,217],"value":[196],"0.97":[198],"than":[201],"linear":[205],"kernel,":[206],"sigmoid":[214],"values":[218],"0.96":[220],"0.37),":[225],"0.24),":[231],"0.90":[233],"0.03":[235],"0.01),":[238],"The":[240,274],"highest":[255],"among":[258],"all":[259,265],"tested":[260],"either":[264],"wavelet":[267],"ones.":[273],"has":[276],"good":[278],"potential":[279],"in":[280],"diagnosing":[281],"based":[283],"radiographs.":[287]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2066316458","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":6},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":3},{"year":2019,"cited_by_count":2},{"year":2017,"cited_by_count":1},{"year":2014,"cited_by_count":1}],"updated_date":"2024-11-27T12:41:13.374917","created_date":"2016-06-24"}