{"id":"https://openalex.org/W4389000520","doi":"https://doi.org/10.1007/978-981-99-8184-7_36","title":"Generating Pseudo-labels for Car Damage Segmentation Using Deep Spectral Method","display_name":"Generating Pseudo-labels for Car Damage Segmentation Using Deep Spectral Method","publication_year":2023,"publication_date":"2023-11-25","ids":{"openalex":"https://openalex.org/W4389000520","doi":"https://doi.org/10.1007/978-981-99-8184-7_36"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/978-981-99-8184-7_36","pdf_url":null,"source":{"id":"https://openalex.org/S2764900261","display_name":"Communications in computer and information science","issn_l":"1865-0929","issn":["1865-0929","1865-0937"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"book-chapter","type_crossref":"book-chapter","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5093337299","display_name":"Nonthapaht Taspan","orcid":null},"institutions":[{"id":"https://openalex.org/I91538806","display_name":"King Mongkut's Institute of Technology Ladkrabang","ror":"https://ror.org/055mf0v62","country_code":"TH","type":"education","lineage":["https://openalex.org/I91538806"]}],"countries":["TH"],"is_corresponding":false,"raw_author_name":"Nonthapaht Taspan","raw_affiliation_strings":["School of Information Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand"],"affiliations":[{"raw_affiliation_string":"School of Information Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand","institution_ids":["https://openalex.org/I91538806"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5093337300","display_name":"Bukorree Madthing","orcid":null},"institutions":[{"id":"https://openalex.org/I91538806","display_name":"King Mongkut's Institute of Technology Ladkrabang","ror":"https://ror.org/055mf0v62","country_code":"TH","type":"education","lineage":["https://openalex.org/I91538806"]}],"countries":["TH"],"is_corresponding":false,"raw_author_name":"Bukorree Madthing","raw_affiliation_strings":["School of Information Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand"],"affiliations":[{"raw_affiliation_string":"School of Information Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand","institution_ids":["https://openalex.org/I91538806"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5039259991","display_name":"Panumate Chetprayoon","orcid":"https://orcid.org/0009-0009-2168-4855"},"institutions":[],"countries":["TH"],"is_corresponding":false,"raw_author_name":"Panumate Chetprayoon","raw_affiliation_strings":["Kasikorn Labs, Nonthaburi, 11120, Thailand"],"affiliations":[{"raw_affiliation_string":"Kasikorn Labs, Nonthaburi, 11120, Thailand","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5084268124","display_name":"Thanatwit Angsarawanee","orcid":"https://orcid.org/0009-0004-2894-0552"},"institutions":[],"countries":["TH"],"is_corresponding":false,"raw_author_name":"Thanatwit Angsarawanee","raw_affiliation_strings":["Kasikorn Labs, Nonthaburi, 11120, Thailand"],"affiliations":[{"raw_affiliation_string":"Kasikorn Labs, Nonthaburi, 11120, Thailand","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5066462028","display_name":"Kitsuchart Pasupa","orcid":"https://orcid.org/0000-0001-8359-9888"},"institutions":[{"id":"https://openalex.org/I91538806","display_name":"King Mongkut's Institute of Technology Ladkrabang","ror":"https://ror.org/055mf0v62","country_code":"TH","type":"education","lineage":["https://openalex.org/I91538806"]}],"countries":["TH"],"is_corresponding":false,"raw_author_name":"Kitsuchart Pasupa","raw_affiliation_strings":["School of Information Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand"],"affiliations":[{"raw_affiliation_string":"School of Information Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand","institution_ids":["https://openalex.org/I91538806"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5090674252","display_name":"Theerat Sakdejayont","orcid":"https://orcid.org/0009-0001-9640-2105"},"institutions":[],"countries":["TH"],"is_corresponding":false,"raw_author_name":"Theerat Sakdejayont","raw_affiliation_strings":["Kasikorn Labs, Nonthaburi, 11120, Thailand"],"affiliations":[{"raw_affiliation_string":"Kasikorn Labs, Nonthaburi, 11120, Thailand","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":70},"biblio":{"volume":null,"issue":null,"first_page":"468","last_page":"482"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Deep Learning in Computer Vision and Image Recognition","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Deep Learning in Computer Vision and Image Recognition","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11606","display_name":"Automated Pavement Inspection and Maintenance","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/2205","display_name":"Civil and Structural Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12111","display_name":"Fabric Defect Detection in Industrial Applications","score":0.9948,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/ground-truth","display_name":"Ground truth","score":0.7709532},{"id":"https://openalex.org/keywords/merge","display_name":"Merge (version control)","score":0.76940954},{"id":"https://openalex.org/keywords/surface-defect-detection","display_name":"Surface Defect Detection","score":0.600457},{"id":"https://openalex.org/keywords/defect-detection","display_name":"Defect Detection","score":0.578853},{"id":"https://openalex.org/keywords/fabric-defect-detection","display_name":"Fabric Defect Detection","score":0.558415},{"id":"https://openalex.org/keywords/crack-detection","display_name":"Crack Detection","score":0.522109},{"id":"https://openalex.org/keywords/semantic-segmentation","display_name":"Semantic Segmentation","score":0.520021}],"concepts":[{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.8457842},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7813956},{"id":"https://openalex.org/C146849305","wikidata":"https://www.wikidata.org/wiki/Q370766","display_name":"Ground truth","level":2,"score":0.7709532},{"id":"https://openalex.org/C197129107","wikidata":"https://www.wikidata.org/wiki/Q1921621","display_name":"Merge (version control)","level":2,"score":0.76940954},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6521573},{"id":"https://openalex.org/C2777381055","wikidata":"https://www.wikidata.org/wiki/Q308922","display_name":"Damages","level":2,"score":0.6211397},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.6043467},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.48595846},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.42532572},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.33005628},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.16014645},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/978-981-99-8184-7_36","pdf_url":null,"source":{"id":"https://openalex.org/S2764900261","display_name":"Communications in computer and information science","issn_l":"1865-0929","issn":["1865-0929","1865-0937"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":12,"referenced_works":["https://openalex.org/W2783365216","https://openalex.org/W2963150697","https://openalex.org/W2963888242","https://openalex.org/W3037658607","https://openalex.org/W3038887002","https://openalex.org/W3155107888","https://openalex.org/W3176692018","https://openalex.org/W4221161877","https://openalex.org/W4313150877","https://openalex.org/W4322393914","https://openalex.org/W4360584477","https://openalex.org/W4386075981"],"related_works":["https://openalex.org/W4387399630","https://openalex.org/W4315434538","https://openalex.org/W4205240985","https://openalex.org/W3124239800","https://openalex.org/W2365977737","https://openalex.org/W2314597598","https://openalex.org/W1997160662","https://openalex.org/W1577024311","https://openalex.org/W1527183021","https://openalex.org/W1494001639"],"abstract_inverted_index":{"Car":[0],"damage":[1,8,39,59,184],"segmentation,":[2],"an":[3,34],"integral":[4],"part":[5],"of":[6,16,20,28,53,92,100,108,113,148,161,170,176],"vehicle":[7],"assessment,":[9],"involves":[10],"identifying":[11],"and":[12,26,44,73,77,85,96,118,145,158,178,192],"classifying":[13],"various":[14],"types":[15],"damages":[17],"from":[18],"images":[19],"vehicles,":[21],"thereby":[22],"enhancing":[23],"the":[24,51,101,105,146,167,171],"efficiency":[25,191],"accuracy":[27,107,193],"assessment":[29,40,172,185],"processes.":[30],"This":[31],"paper":[32],"introduces":[33],"efficient":[35],"approach":[36,72,136],"for":[37,189],"car":[38,58,162,183],"by":[41,61],"combining":[42],"pseudo-labeling":[43,177],"deep":[45,70,179],"learning":[46,180],"techniques.":[47],"The":[48,174],"method":[49,165],"addresses":[50],"challenge":[52],"limited":[54],"labeled":[55],"data":[56],"in":[57,115,120,182,194],"segmentation":[60,117,122],"leveraging":[62],"unlabeled":[63],"data.":[64],"Pseudo-labels":[65],"are":[66,87],"generated":[67],"using":[68,89],"a":[69,90,125],"spectral":[71],"refined":[74],"through":[75],"merge":[76],"flip-bit":[78],"operations.":[79],"Two":[80],"models,":[81],"i.e.,":[82],"Mask":[83],"R-CNN":[84],"SegFormer,":[86],"trained":[88],"combination":[91],"ground":[93,127],"truth":[94,128],"labels":[95],"pseudo-labels.":[97],"Experimental":[98],"evaluation":[99],"CarDD":[102],"dataset":[103],"demonstrates":[104],"superior":[106],"our":[109,135,164],"method,":[110],"achieving":[111],"improvements":[112],"12.9%":[114],"instance":[116],"18.8%":[119],"semantic":[121],"when":[123],"utilizing":[124],"1/2":[126],"ratio.":[129],"In":[130],"addition":[131],"to":[132],"enhanced":[133],"accuracy,":[134],"offers":[137],"several":[138],"benefits,":[139],"including":[140],"time":[141],"savings,":[142],"cost":[143],"reductions,":[144],"elimination":[147],"biases":[149],"associated":[150],"with":[151],"human":[152],"judgment.":[153],"By":[154],"enabling":[155],"more":[156],"precise":[157],"reliable":[159],"identification":[160],"damages,":[163],"enhances":[166],"overall":[168],"effectiveness":[169],"process.":[173],"integration":[175],"techniques":[181],"holds":[186],"significant":[187],"potential":[188],"improving":[190],"real-world":[195],"scenarios.":[196]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4389000520","counts_by_year":[],"updated_date":"2024-10-11T11:56:39.585309","created_date":"2023-11-26"}