{"id":"https://openalex.org/W2895339837","doi":"https://doi.org/10.1007/978-981-13-2907-4_14","title":"Adaptive Graph Learning for Supervised Low-Rank Spectral Feature Selection","display_name":"Adaptive Graph Learning for Supervised Low-Rank Spectral Feature Selection","publication_year":2018,"publication_date":"2018-01-01","ids":{"openalex":"https://openalex.org/W2895339837","doi":"https://doi.org/10.1007/978-981-13-2907-4_14","mag":"2895339837"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/978-981-13-2907-4_14","pdf_url":null,"source":{"id":"https://openalex.org/S2764900261","display_name":"Communications in computer and information science","issn_l":"1865-0929","issn":["1865-0929","1865-0937"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"book-chapter","type_crossref":"book-chapter","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5040961663","display_name":"Zhi Zhong","orcid":"https://orcid.org/0000-0002-8730-5530"},"institutions":[],"countries":["CN"],"is_corresponding":true,"raw_author_name":"Zhi Zhong","raw_affiliation_strings":["College of Continuing Education, Guangxi Teachers Education University, Nanning, 530001, Guangxi, People\u2019s Republic of China"],"affiliations":[{"raw_affiliation_string":"College of Continuing Education, Guangxi Teachers Education University, Nanning, 530001, Guangxi, People\u2019s Republic of China","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":0,"corresponding_author_ids":["https://openalex.org/A5040961663"],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.423567,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":70,"max":74},"biblio":{"volume":null,"issue":null,"first_page":"159","last_page":"171"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10057","display_name":"Face Recognition and Dimensionality Reduction Techniques","score":0.9969,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10057","display_name":"Face Recognition and Dimensionality Reduction Techniques","score":0.9969,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12676","display_name":"Theory and Applications of Extreme Learning Machines","score":0.9901,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10689","display_name":"Hyperspectral Image Analysis and Classification","score":0.9764,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature-selection","display_name":"Feature Selection","score":0.574101},{"id":"https://openalex.org/keywords/feature-extraction","display_name":"Feature Extraction","score":0.558281},{"id":"https://openalex.org/keywords/feature-learning","display_name":"Feature learning","score":0.5362697},{"id":"https://openalex.org/keywords/rank","display_name":"Rank (graph theory)","score":0.53614},{"id":"https://openalex.org/keywords/spectral-clustering","display_name":"Spectral Clustering","score":0.527158},{"id":"https://openalex.org/keywords/change-detection","display_name":"Change Detection","score":0.52635},{"id":"https://openalex.org/keywords/support-vector-machines","display_name":"Support Vector Machines","score":0.521888},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.5026562},{"id":"https://openalex.org/keywords/learning-to-rank","display_name":"Learning to rank","score":0.426633}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6884817},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.67235124},{"id":"https://openalex.org/C148483581","wikidata":"https://www.wikidata.org/wiki/Q446488","display_name":"Feature selection","level":2,"score":0.6204824},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.57603574},{"id":"https://openalex.org/C59404180","wikidata":"https://www.wikidata.org/wiki/Q17013334","display_name":"Feature learning","level":2,"score":0.5362697},{"id":"https://openalex.org/C164226766","wikidata":"https://www.wikidata.org/wiki/Q7293202","display_name":"Rank (graph theory)","level":2,"score":0.53614},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.5026562},{"id":"https://openalex.org/C2777303404","wikidata":"https://www.wikidata.org/wiki/Q759757","display_name":"Convergence (economics)","level":2,"score":0.47656038},{"id":"https://openalex.org/C2776036281","wikidata":"https://www.wikidata.org/wiki/Q48769818","display_name":"Constraint (computer-aided design)","level":2,"score":0.47355166},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4713758},{"id":"https://openalex.org/C86037889","wikidata":"https://www.wikidata.org/wiki/Q4330127","display_name":"Learning to rank","level":3,"score":0.426633},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.40618002},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.2480897},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.19530931},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C189430467","wikidata":"https://www.wikidata.org/wiki/Q7293293","display_name":"Ranking (information retrieval)","level":2,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C50522688","wikidata":"https://www.wikidata.org/wiki/Q189833","display_name":"Economic growth","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/978-981-13-2907-4_14","pdf_url":null,"source":{"id":"https://openalex.org/S2764900261","display_name":"Communications in computer and information science","issn_l":"1865-0929","issn":["1865-0929","1865-0937"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":24,"referenced_works":["https://openalex.org/W120692785","https://openalex.org/W1980132690","https://openalex.org/W19842529","https://openalex.org/W1996232089","https://openalex.org/W2075230492","https://openalex.org/W2083666679","https://openalex.org/W2146775659","https://openalex.org/W2244035566","https://openalex.org/W2283878417","https://openalex.org/W2335437633","https://openalex.org/W2396641305","https://openalex.org/W2422268042","https://openalex.org/W2466939964","https://openalex.org/W2606436201","https://openalex.org/W2614818206","https://openalex.org/W2619581554","https://openalex.org/W2743129437","https://openalex.org/W2746486433","https://openalex.org/W2752728896","https://openalex.org/W2763434300","https://openalex.org/W2765158981","https://openalex.org/W2809701111","https://openalex.org/W2883604340","https://openalex.org/W2953381901"],"related_works":["https://openalex.org/W4291951920","https://openalex.org/W3011471740","https://openalex.org/W2963262648","https://openalex.org/W2884580467","https://openalex.org/W2807251790","https://openalex.org/W2772359885","https://openalex.org/W2572315477","https://openalex.org/W2349674371","https://openalex.org/W2152992791","https://openalex.org/W2112835755"],"abstract_inverted_index":{"Spectral":[0],"feature":[1,25,51,96,132],"selection":[2,52,133],"(SFS)":[3],"is":[4,55,60,71,114],"getting":[5],"more":[6,8],"and":[7,50,84,95,107,130],"attention":[9],"in":[10,99],"recent":[11],"years.":[12],"However,":[13],"conventional":[14],"SFS":[15,29,54,70],"has":[16,137],"some":[17,128],"weaknesses":[18],"that":[19],"may":[20],"corrupt":[21],"the":[22,32,45,64,92,118],"performance":[23],"of":[24,53,82],"selection,":[26],"since":[27],"(1)":[28],"generally":[30],"preserves":[31],"either":[33],"global":[34,65],"structure":[35,81],"or":[36],"local":[37],"structure,":[38],"which":[39,59],"can\u2019t":[40],"provide":[41],"comprehensive":[42],"information":[43],"for":[44,78],"model;":[46],"(2)":[47],"graph":[48,88,93],"learning":[49,89,94,98,109],"two":[56],"individual":[57],"processes,":[58],"hard":[61],"to":[62,90,103,116,127],"achieve":[63],"optimization.":[66],"Thus,":[67],"a":[68,75,105,122,139],"novel":[69],"proposed":[72,115,119],"via":[73],"introducing":[74],"low-rank":[76],"constraint":[77],"capturing":[79],"inherent":[80],"data,":[83],"utilizing":[85],"an":[86,100],"adaptive":[87],"couple":[91],"data":[97],"iterative":[101],"framework":[102],"output":[104],"robust":[106],"accurate":[108],"model.":[110],"A":[111],"optimization":[112],"algorithm":[113],"solve":[117],"problem":[120],"with":[121],"fast":[123],"convergence.":[124],"By":[125],"comparing":[126],"classical":[129],"first-class":[131],"methods,":[134],"our":[135],"method":[136],"exhibited":[138],"competitive":[140],"performance.":[141]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2895339837","counts_by_year":[{"year":2022,"cited_by_count":2}],"updated_date":"2024-10-02T08:56:40.216155","created_date":"2018-10-12"}