iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1007/978-3-642-25085-9_36
{"id":"https://openalex.org/W86126838","doi":"https://doi.org/10.1007/978-3-642-25085-9_36","title":"Embedded Feature Selection for Support Vector Machines: State-of-the-Art and Future Challenges","display_name":"Embedded Feature Selection for Support Vector Machines: State-of-the-Art and Future Challenges","publication_year":2011,"publication_date":"2011-01-01","ids":{"openalex":"https://openalex.org/W86126838","doi":"https://doi.org/10.1007/978-3-642-25085-9_36","mag":"86126838"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/978-3-642-25085-9_36","pdf_url":"https://link.springer.com/content/pdf/10.1007/978-3-642-25085-9_36.pdf","source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"book-chapter","type_crossref":"book-chapter","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://link.springer.com/content/pdf/10.1007/978-3-642-25085-9_36.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5007513550","display_name":"Sebasti\u00e1n Maldonado","orcid":"https://orcid.org/0000-0002-7124-0437"},"institutions":[{"id":"https://openalex.org/I189977406","display_name":"Universidad de Los Andes, Chile","ror":"https://ror.org/03v0qd864","country_code":"CL","type":"education","lineage":["https://openalex.org/I189977406"]}],"countries":["CL"],"is_corresponding":false,"raw_author_name":"Sebasti\u00e1n Maldonado","raw_affiliation_strings":["Universidad de los Andes, Faculty of Engineering and Applied Sciences Av. San Carlos de Apoquindo 2200, Las Condes, Santiago, Chile"],"affiliations":[{"raw_affiliation_string":"Universidad de los Andes, Faculty of Engineering and Applied Sciences Av. San Carlos de Apoquindo 2200, Las Condes, Santiago, Chile","institution_ids":["https://openalex.org/I189977406"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5085037027","display_name":"Richard W. Weber","orcid":"https://orcid.org/0000-0002-6351-1065"},"institutions":[{"id":"https://openalex.org/I69737025","display_name":"University of Chile","ror":"https://ror.org/047gc3g35","country_code":"CL","type":"education","lineage":["https://openalex.org/I69737025"]}],"countries":["CL"],"is_corresponding":false,"raw_author_name":"Richard Weber","raw_affiliation_strings":["Department of Industrial Engineering, University of Chile"],"affiliations":[{"raw_affiliation_string":"Department of Industrial Engineering, University of Chile","institution_ids":["https://openalex.org/I69737025"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":5000,"currency":"EUR","value_usd":5392,"provenance":"doaj"},"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":8,"citation_normalized_percentile":{"value":0.718239,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":83,"max":84},"biblio":{"volume":null,"issue":null,"first_page":"304","last_page":"311"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12535","display_name":"Learning with Noisy Labels in Machine Learning","score":0.9889,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12535","display_name":"Learning with Noisy Labels in Machine Learning","score":0.9889,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12254","display_name":"Prediction of Protein Subcellular Localization","score":0.988,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T11550","display_name":"Multi-label Text Classification in Machine Learning","score":0.9783,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/support-vector-machines-(svm)","display_name":"Support Vector Machines (SVM)","score":0.69168},{"id":"https://openalex.org/keywords/support-vector-machines","display_name":"Support Vector Machines","score":0.678227},{"id":"https://openalex.org/keywords/feature-selection","display_name":"Feature Selection","score":0.581297},{"id":"https://openalex.org/keywords/machine-learning-algorithms","display_name":"Machine Learning Algorithms","score":0.536057},{"id":"https://openalex.org/keywords/robust-learning","display_name":"Robust Learning","score":0.535626},{"id":"https://openalex.org/keywords/binary-classification","display_name":"Binary classification","score":0.4823972},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.43821084}],"concepts":[{"id":"https://openalex.org/C148483581","wikidata":"https://www.wikidata.org/wiki/Q446488","display_name":"Feature selection","level":2,"score":0.8174871},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.77513474},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7430224},{"id":"https://openalex.org/C152124472","wikidata":"https://www.wikidata.org/wiki/Q1204361","display_name":"Redundancy (engineering)","level":2,"score":0.7346556},{"id":"https://openalex.org/C48044578","wikidata":"https://www.wikidata.org/wiki/Q727490","display_name":"Scalability","level":2,"score":0.685456},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.60572684},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5340931},{"id":"https://openalex.org/C81917197","wikidata":"https://www.wikidata.org/wiki/Q628760","display_name":"Selection (genetic algorithm)","level":2,"score":0.5166169},{"id":"https://openalex.org/C66905080","wikidata":"https://www.wikidata.org/wiki/Q17005494","display_name":"Binary classification","level":3,"score":0.4823972},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.47582582},{"id":"https://openalex.org/C16811321","wikidata":"https://www.wikidata.org/wiki/Q17138905","display_name":"Minimum redundancy feature selection","level":3,"score":0.4484555},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.43821084},{"id":"https://openalex.org/C48103436","wikidata":"https://www.wikidata.org/wiki/Q599031","display_name":"State (computer science)","level":2,"score":0.43060023},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.120922655},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.11979583},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/978-3-642-25085-9_36","pdf_url":"https://link.springer.com/content/pdf/10.1007/978-3-642-25085-9_36.pdf","source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/978-3-642-25085-9_36","pdf_url":"https://link.springer.com/content/pdf/10.1007/978-3-642-25085-9_36.pdf","source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":14,"referenced_works":["https://openalex.org/W1680014149","https://openalex.org/W1749992802","https://openalex.org/W1840091437","https://openalex.org/W1922017469","https://openalex.org/W2037984448","https://openalex.org/W2094023061","https://openalex.org/W2097839764","https://openalex.org/W2113362355","https://openalex.org/W2116948717","https://openalex.org/W2124225314","https://openalex.org/W2148603752","https://openalex.org/W2169171650","https://openalex.org/W4205699531","https://openalex.org/W53188351"],"related_works":["https://openalex.org/W4388573469","https://openalex.org/W3135058836","https://openalex.org/W3120617324","https://openalex.org/W3036204000","https://openalex.org/W2998727463","https://openalex.org/W2805829984","https://openalex.org/W2747166117","https://openalex.org/W2350815964","https://openalex.org/W2156571267","https://openalex.org/W1838735596"],"abstract_inverted_index":{"Recently,":[0],"databases":[1],"have":[2],"incremented":[3],"their":[4,111],"size":[5],"in":[6,50,86],"all":[7],"areas":[8],"of":[9,15,25,27,33,39,52],"knowledge,":[10],"considering":[11],"both":[12],"the":[13,61,63,69,83],"number":[14],"instances":[16],"and":[17,54,93,96,113],"attributes.":[18],"Current":[19],"data":[20,40,47],"sets":[21],"may":[22,41],"handle":[23,82],"hundreds":[24],"thousands":[26],"variables":[28],"with":[29,105],"a":[30],"high":[31],"level":[32],"redundancy":[34],"and/or":[35],"irrelevancy.":[36],"This":[37],"amount":[38],"cause":[42],"several":[43],"problems":[44],"to":[45,109],"many":[46],"mining":[48],"algorithms":[49,108],"terms":[51],"performance":[53],"scalability.":[55],"In":[56],"this":[57,87],"work":[58],"we":[59],"present":[60],"state-of-the-art":[62,107],"for":[64],"embedded":[65],"feature":[66,92],"selection":[67,95],"using":[68],"classification":[70],"method":[71],"Support":[72],"Vector":[73],"Machine":[74],"(SVM),":[75],"presenting":[76],"two":[77],"additional":[78],"works":[79],"that":[80],"can":[81],"new":[84],"challenges":[85],"area,":[88],"such":[89],"as":[90],"simultaneous":[91],"model":[94],"highly":[97],"imbalanced":[98],"binary":[99],"classification.":[100],"We":[101],"compare":[102],"our":[103],"approaches":[104],"other":[106],"demonstrate":[110],"effectiveness":[112],"efficiency.":[114]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W86126838","counts_by_year":[{"year":2022,"cited_by_count":1},{"year":2018,"cited_by_count":3},{"year":2017,"cited_by_count":3},{"year":2015,"cited_by_count":1}],"updated_date":"2024-11-24T06:52:22.540490","created_date":"2016-06-24"}