{"id":"https://openalex.org/W2119772606","doi":"https://doi.org/10.1007/978-3-642-14980-1_55","title":"An Empirical Comparison of Kernel-Based and Dissimilarity-Based Feature Spaces","display_name":"An Empirical Comparison of Kernel-Based and Dissimilarity-Based Feature Spaces","publication_year":2010,"publication_date":"2010-01-01","ids":{"openalex":"https://openalex.org/W2119772606","doi":"https://doi.org/10.1007/978-3-642-14980-1_55","mag":"2119772606"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/978-3-642-14980-1_55","pdf_url":"https://link.springer.com/content/pdf/10.1007%2F978-3-642-14980-1_55.pdf","source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"book-chapter","type_crossref":"book-chapter","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://link.springer.com/content/pdf/10.1007%2F978-3-642-14980-1_55.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5114858718","display_name":"Sang\u2010Woon Kim","orcid":"https://orcid.org/0000-0002-3172-8462"},"institutions":[{"id":"https://openalex.org/I89440247","display_name":"Myongji University","ror":"https://ror.org/00s9dpb54","country_code":"KR","type":"education","lineage":["https://openalex.org/I89440247"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Sang-Woon Kim","raw_affiliation_strings":["Dept. of Comput. Sci. & Eng., MyongJi Univ., Yongin, South Korea"],"affiliations":[{"raw_affiliation_string":"Dept. of Comput. Sci. & Eng., MyongJi Univ., Yongin, South Korea","institution_ids":["https://openalex.org/I89440247"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5109106696","display_name":"Robert P. W. Duin","orcid":null},"institutions":[{"id":"https://openalex.org/I98358874","display_name":"Delft University of Technology","ror":"https://ror.org/02e2c7k09","country_code":"NL","type":"education","lineage":["https://openalex.org/I98358874"]}],"countries":["NL"],"is_corresponding":false,"raw_author_name":"Robert P. W. Duin","raw_affiliation_strings":["Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, The Netherlands#TAB#"],"affiliations":[{"raw_affiliation_string":"Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, The Netherlands#TAB#","institution_ids":["https://openalex.org/I98358874"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":5000,"currency":"EUR","value_usd":5392,"provenance":"doaj"},"apc_paid":null,"fwci":0.251,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.476559,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":71,"max":75},"biblio":{"volume":null,"issue":null,"first_page":"559","last_page":"568"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10057","display_name":"Face Recognition and Dimensionality Reduction Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10057","display_name":"Face Recognition and Dimensionality Reduction Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12535","display_name":"Learning with Noisy Labels in Machine Learning","score":0.9979,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11550","display_name":"Multi-label Text Classification in Machine Learning","score":0.9974,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.81600606},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.8112916},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.57081527},{"id":"https://openalex.org/keywords/feature-vector","display_name":"Feature vector","score":0.5660799},{"id":"https://openalex.org/keywords/dimensionality-reduction","display_name":"Dimensionality Reduction","score":0.497722},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.46935114}],"concepts":[{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.81600606},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.8112916},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.7342088},{"id":"https://openalex.org/C184898388","wikidata":"https://www.wikidata.org/wiki/Q1435712","display_name":"Pairwise comparison","level":2,"score":0.71766627},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6461504},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.57081527},{"id":"https://openalex.org/C83665646","wikidata":"https://www.wikidata.org/wiki/Q42139305","display_name":"Feature vector","level":2,"score":0.5660799},{"id":"https://openalex.org/C122280245","wikidata":"https://www.wikidata.org/wiki/Q620622","display_name":"Kernel method","level":3,"score":0.5589597},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.54053473},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.50159335},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.46935114},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.4504885},{"id":"https://openalex.org/C134517425","wikidata":"https://www.wikidata.org/wiki/Q16000131","display_name":"Kernel embedding of distributions","level":4,"score":0.43909946},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.08381459},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/978-3-642-14980-1_55","pdf_url":"https://link.springer.com/content/pdf/10.1007%2F978-3-642-14980-1_55.pdf","source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/978-3-642-14980-1_55","pdf_url":"https://link.springer.com/content/pdf/10.1007%2F978-3-642-14980-1_55.pdf","source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities","score":0.75}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":19,"referenced_works":["https://openalex.org/W1480708938","https://openalex.org/W1510073064","https://openalex.org/W1601914754","https://openalex.org/W167130381","https://openalex.org/W200785814","https://openalex.org/W2041657594","https://openalex.org/W2047737850","https://openalex.org/W2076523907","https://openalex.org/W2097827365","https://openalex.org/W2100235303","https://openalex.org/W2103164654","https://openalex.org/W2108611942","https://openalex.org/W2122135337","https://openalex.org/W2129971280","https://openalex.org/W2140095548","https://openalex.org/W2144635266","https://openalex.org/W2171890530","https://openalex.org/W2782509404","https://openalex.org/W4249190976"],"related_works":["https://openalex.org/W4294351650","https://openalex.org/W2535206775","https://openalex.org/W2127229869","https://openalex.org/W2090782076","https://openalex.org/W2081743126","https://openalex.org/W1984421104","https://openalex.org/W1975708617","https://openalex.org/W1836142315","https://openalex.org/W1565299197","https://openalex.org/W156213964"],"abstract_inverted_index":{"The":[0,95],"aim":[1],"of":[2,40,98,120,143,188],"this":[3,135],"paper":[4],"is":[5,14],"to":[6,10],"find":[7],"an":[8,140],"answer":[9],"the":[11,15,37,56,69,82,87,101,117,123,148,153,157,171],"question:":[12],"What":[13],"difference":[16,83],"between":[17,86,113],"dissimilarity-based":[18],"classifications(DBCs)":[19],"and":[20,156],"other":[21,57],"kernel-based":[22],"classifications(KBCs)?":[23],"In":[24,52,134],"DBCs":[25,99,179],"[11],":[26],"classifiers":[27,59,145],"are":[28,33,60],"defined":[29],"among":[30,50],"classes;":[31],"they":[32],"not":[34,175],"based":[35],"on":[36,45,55,139],"feature":[38,65,72],"measurements":[39],"individual":[41],"objects,":[42,115],"but":[43],"rather":[44],"a":[46,63,78,105,128],"suitable":[47],"dissimilarity":[48,111,154],"measure":[49],"them.":[51],"KBCs":[53,121,185],"[15],":[54],"hand,":[58],"designed":[61],"in":[62,104,127,147,186],"high-dimensional":[64],"space":[66,73,155],"transformed":[67],"from":[68],"original":[70],"input":[71],"through":[74,109],"kernels,":[75],"such":[76],"as":[77,93],"Mercer":[79],"kernel.":[80],"Thus,":[81],"that":[84,169],"exists":[85],"two":[88,114,149],"approaches":[89],"can":[90],"be":[91],"summarized":[92],"follows:":[94],"distance":[96],"kernel":[97,119,158,172],"represents":[100,122],"discriminative":[102,124],"information":[103,125],"relative":[106],"manner,":[107],"i.e.":[108],"pairwise":[110],"relations":[112],"while":[116],"mapping":[118],"uniformly":[126],"fixed":[129],"way":[130],"for":[131],"all":[132],"objects.":[133],"paper,":[136],"we":[137],"report":[138],"empirical":[141],"evaluation":[142],"some":[144],"built":[146],"different":[150],"representation":[151],"spaces:":[152],"space.":[159],"Our":[160],"experimental":[161],"results,":[162],"obtained":[163],"with":[164],"well-known":[165],"benchmark":[166],"databases,":[167],"demonstrate":[168],"when":[170],"parameters":[173],"have":[174],"been":[176],"appropriately":[177],"chosen,":[178],"always":[180],"achieve":[181],"better":[182],"results":[183],"than":[184],"terms":[187],"classification":[189],"accuracies.":[190]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2119772606","counts_by_year":[{"year":2016,"cited_by_count":1},{"year":2013,"cited_by_count":1}],"updated_date":"2024-11-30T15:10:46.014910","created_date":"2016-06-24"}