{"id":"https://openalex.org/W2150673319","doi":"https://doi.org/10.1007/978-3-540-89689-0_76","title":"Learning Curves for the Analysis of Multiple Instance Classifiers","display_name":"Learning Curves for the Analysis of Multiple Instance Classifiers","publication_year":2008,"publication_date":"2008-01-01","ids":{"openalex":"https://openalex.org/W2150673319","doi":"https://doi.org/10.1007/978-3-540-89689-0_76","mag":"2150673319"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/978-3-540-89689-0_76","pdf_url":"https://link.springer.com/content/pdf/10.1007%2F978-3-540-89689-0_76.pdf","source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"book-chapter","type_crossref":"book-chapter","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://link.springer.com/content/pdf/10.1007%2F978-3-540-89689-0_76.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5001295629","display_name":"David M. J. Tax","orcid":"https://orcid.org/0000-0002-5153-9087"},"institutions":[{"id":"https://openalex.org/I98358874","display_name":"Delft University of Technology","ror":"https://ror.org/02e2c7k09","country_code":"NL","type":"education","lineage":["https://openalex.org/I98358874"]}],"countries":["NL"],"is_corresponding":false,"raw_author_name":"David M. J. Tax","raw_affiliation_strings":["Delft University of Technology, Delft, The Netherlands"],"affiliations":[{"raw_affiliation_string":"Delft University of Technology, Delft, The Netherlands","institution_ids":["https://openalex.org/I98358874"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5109106696","display_name":"Robert P. W. Duin","orcid":null},"institutions":[{"id":"https://openalex.org/I98358874","display_name":"Delft University of Technology","ror":"https://ror.org/02e2c7k09","country_code":"NL","type":"education","lineage":["https://openalex.org/I98358874"]}],"countries":["NL"],"is_corresponding":false,"raw_author_name":"Robert P. W. Duin","raw_affiliation_strings":["Delft University of Technology, Delft, The Netherlands"],"affiliations":[{"raw_affiliation_string":"Delft University of Technology, Delft, The Netherlands","institution_ids":["https://openalex.org/I98358874"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":5000,"currency":"EUR","value_usd":5392,"provenance":"doaj"},"apc_paid":null,"fwci":0.355,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":14,"citation_normalized_percentile":{"value":0.869412,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":86,"max":87},"biblio":{"volume":null,"issue":null,"first_page":"724","last_page":"733"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10824","display_name":"Shape Matching and Object Recognition","score":0.9954,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10824","display_name":"Shape Matching and Object Recognition","score":0.9954,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10057","display_name":"Face Recognition and Dimensionality Reduction Techniques","score":0.9952,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12535","display_name":"Learning with Noisy Labels in Machine Learning","score":0.9882,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.564037},{"id":"https://openalex.org/keywords/robust-learning","display_name":"Robust Learning","score":0.512562},{"id":"https://openalex.org/keywords/support-vector-machines","display_name":"Support Vector Machines","score":0.505389},{"id":"https://openalex.org/keywords/feature-vector","display_name":"Feature vector","score":0.49430656}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7497115},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.68801373},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.6561904},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.564037},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.5384808},{"id":"https://openalex.org/C185429906","wikidata":"https://www.wikidata.org/wiki/Q1130160","display_name":"Estimator","level":2,"score":0.50829333},{"id":"https://openalex.org/C83665646","wikidata":"https://www.wikidata.org/wiki/Q42139305","display_name":"Feature vector","level":2,"score":0.49430656},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.49300835},{"id":"https://openalex.org/C106135958","wikidata":"https://www.wikidata.org/wiki/Q7291993","display_name":"Random subspace method","level":3,"score":0.4742419},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.46496135},{"id":"https://openalex.org/C9652623","wikidata":"https://www.wikidata.org/wiki/Q190109","display_name":"Field (mathematics)","level":2,"score":0.45739114},{"id":"https://openalex.org/C169903167","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Test set","level":2,"score":0.42333254},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.19812387},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.08350611},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/978-3-540-89689-0_76","pdf_url":"https://link.springer.com/content/pdf/10.1007%2F978-3-540-89689-0_76.pdf","source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/978-3-540-89689-0_76","pdf_url":"https://link.springer.com/content/pdf/10.1007%2F978-3-540-89689-0_76.pdf","source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.5,"display_name":"Quality education","id":"https://metadata.un.org/sdg/4"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":24,"referenced_works":["https://openalex.org/W1524926518","https://openalex.org/W1535599202","https://openalex.org/W1544435011","https://openalex.org/W1558339584","https://openalex.org/W1560331282","https://openalex.org/W1981276685","https://openalex.org/W2013831731","https://openalex.org/W2042574171","https://openalex.org/W2078579128","https://openalex.org/W2089933214","https://openalex.org/W2098166271","https://openalex.org/W2110119381","https://openalex.org/W2120100126","https://openalex.org/W2124410428","https://openalex.org/W2154318594","https://openalex.org/W2155653793","https://openalex.org/W2162685317","https://openalex.org/W2163474322","https://openalex.org/W2171258889","https://openalex.org/W2479545322","https://openalex.org/W2797114046","https://openalex.org/W2913668833","https://openalex.org/W2999905431","https://openalex.org/W4298186428"],"related_works":["https://openalex.org/W4285281467","https://openalex.org/W3197541072","https://openalex.org/W2734744645","https://openalex.org/W2384093694","https://openalex.org/W2348964713","https://openalex.org/W2187500075","https://openalex.org/W2160451891","https://openalex.org/W2153189372","https://openalex.org/W2008870648","https://openalex.org/W1987859285"],"abstract_inverted_index":{"In":[0,70],"Multiple":[1],"Instance":[2],"Learning":[3],"(MIL)":[4],"problems,":[5,22],"objects":[6,24],"are":[7,25,49,60],"represented":[8,26],"by":[9,27],"a":[10,28,111,123],"set":[11,88],"of":[12,41,92,100,113],"feature":[13,30],"vectors,":[14],"in":[15,51,136],"contrast":[16],"to":[17,37,76],"the":[18,66,82,104,114,131,137],"standard":[19,50,67,105],"pattern":[20],"recognition":[21],"where":[23],"single":[29],"vector.":[31],"Numerous":[32],"classifiers":[33,59,102,134],"have":[34],"been":[35],"proposed":[36],"solve":[38],"this":[39,52],"type":[40],"MIL":[42],"classification":[43,68],"problem.":[44],"Unfortunately":[45],"only":[46],"two":[47],"datasets":[48,64,106,122],"field":[53],"(MUSK-1":[54],"and":[55,57,86,108],"MUSK-2),":[56],"all":[58],"evaluated":[61],"on":[62,84,103],"these":[63],"using":[65],"error.":[69],"practice":[71],"it":[72],"is":[73],"very":[74],"informative":[75],"investigate":[77],"their":[78],"learning":[79],"curves,":[80],"i.e.":[81],"performance":[83],"train":[85],"test":[87],"for":[89,120],"varying":[90],"number":[91],"training":[93,115],"objects.":[94],"This":[95,117],"paper":[96],"offers":[97],"an":[98],"evaluation":[99],"several":[101],"MUSK-1":[107],"MUSK-2":[109],"as":[110],"function":[112],"size.":[116],"suggests":[118],"that":[119],"smaller":[121],"Parzen":[124],"density":[125],"estimator":[126],"may":[127],"be":[128],"preferrer":[129],"over":[130],"other":[132],"\u2019optimal\u2019":[133],"given":[135],"literature.":[138]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2150673319","counts_by_year":[{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":1},{"year":2018,"cited_by_count":2},{"year":2017,"cited_by_count":1},{"year":2016,"cited_by_count":1},{"year":2015,"cited_by_count":1},{"year":2014,"cited_by_count":2},{"year":2013,"cited_by_count":2},{"year":2012,"cited_by_count":1}],"updated_date":"2024-10-20T07:48:17.460512","created_date":"2016-06-24"}