iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1007/978-3-031-58547-0_6
{"id":"https://openalex.org/W4394828645","doi":"https://doi.org/10.1007/978-3-031-58547-0_6","title":"Mind the Data, Measuring the Performance Gap Between Tree Ensembles and Deep Learning on Tabular Data","display_name":"Mind the Data, Measuring the Performance Gap Between Tree Ensembles and Deep Learning on Tabular Data","publication_year":2024,"publication_date":"2024-01-01","ids":{"openalex":"https://openalex.org/W4394828645","doi":"https://doi.org/10.1007/978-3-031-58547-0_6"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/978-3-031-58547-0_6","pdf_url":null,"source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"book-chapter","type_crossref":"book-chapter","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5072353516","display_name":"Axel Karlsson","orcid":"https://orcid.org/0000-0002-3089-5525"},"institutions":[],"countries":["SE"],"is_corresponding":false,"raw_author_name":"Axel Karlsson","raw_affiliation_strings":["King, Stockholm, Sweden"],"affiliations":[{"raw_affiliation_string":"King, Stockholm, Sweden","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5081072752","display_name":"Tianze Wang","orcid":"https://orcid.org/0000-0003-0422-6560"},"institutions":[],"countries":["SE"],"is_corresponding":false,"raw_author_name":"Tianze Wang","raw_affiliation_strings":["King, Stockholm, Sweden"],"affiliations":[{"raw_affiliation_string":"King, Stockholm, Sweden","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5032811876","display_name":"S\u0142awomir Nowaczyk","orcid":"https://orcid.org/0000-0002-7796-5201"},"institutions":[{"id":"https://openalex.org/I746986","display_name":"Halmstad University","ror":"https://ror.org/03h0qfp10","country_code":"SE","type":"education","lineage":["https://openalex.org/I746986"]}],"countries":["SE"],"is_corresponding":false,"raw_author_name":"Slawomir Nowaczyk","raw_affiliation_strings":["Center for Applied Intelligent Systems Research, Halmstad University, Halmstad, Sweden"],"affiliations":[{"raw_affiliation_string":"Center for Applied Intelligent Systems Research, Halmstad University, Halmstad, Sweden","institution_ids":["https://openalex.org/I746986"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5065509988","display_name":"Sepideh Pashami","orcid":"https://orcid.org/0000-0003-3272-4145"},"institutions":[{"id":"https://openalex.org/I746986","display_name":"Halmstad University","ror":"https://ror.org/03h0qfp10","country_code":"SE","type":"education","lineage":["https://openalex.org/I746986"]}],"countries":["SE"],"is_corresponding":false,"raw_author_name":"Sepideh Pashami","raw_affiliation_strings":["Center for Applied Intelligent Systems Research, Halmstad University, Halmstad, Sweden"],"affiliations":[{"raw_affiliation_string":"Center for Applied Intelligent Systems Research, Halmstad University, Halmstad, Sweden","institution_ids":["https://openalex.org/I746986"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5052390681","display_name":"Sahar Asadi","orcid":"https://orcid.org/0000-0002-4017-3550"},"institutions":[],"countries":["SE"],"is_corresponding":false,"raw_author_name":"Sahar Asadi","raw_affiliation_strings":["King, Stockholm, Sweden"],"affiliations":[{"raw_affiliation_string":"King, Stockholm, Sweden","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":5000,"currency":"EUR","value_usd":5392,"provenance":"doaj"},"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":86},"biblio":{"volume":null,"issue":null,"first_page":"65","last_page":"76"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12535","display_name":"Learning with Noisy Labels in Machine Learning","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12535","display_name":"Learning with Noisy Labels in Machine Learning","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12026","display_name":"Explainable Artificial Intelligence","score":0.9938,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection in High-Dimensional Data","score":0.992,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/interpretable-models","display_name":"Interpretable Models","score":0.530333},{"id":"https://openalex.org/keywords/deep-learning","display_name":"Deep Learning","score":0.525651},{"id":"https://openalex.org/keywords/machine-learning-interpretability","display_name":"Machine Learning Interpretability","score":0.525643},{"id":"https://openalex.org/keywords/meta-learning","display_name":"Meta-Learning","score":0.525145},{"id":"https://openalex.org/keywords/model-interpretability","display_name":"Model Interpretability","score":0.521992},{"id":"https://openalex.org/keywords/ensemble-learning","display_name":"Ensemble learning","score":0.4742764},{"id":"https://openalex.org/keywords/tree","display_name":"Tree (set theory)","score":0.44751006}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8540392},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.7408019},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7167815},{"id":"https://openalex.org/C84525736","wikidata":"https://www.wikidata.org/wiki/Q831366","display_name":"Decision tree","level":2,"score":0.58197373},{"id":"https://openalex.org/C66322947","wikidata":"https://www.wikidata.org/wiki/Q11658","display_name":"Transformer","level":3,"score":0.56369674},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.53958035},{"id":"https://openalex.org/C45942800","wikidata":"https://www.wikidata.org/wiki/Q245652","display_name":"Ensemble learning","level":2,"score":0.4742764},{"id":"https://openalex.org/C113174947","wikidata":"https://www.wikidata.org/wiki/Q2859736","display_name":"Tree (set theory)","level":2,"score":0.44751006},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.34173676},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C165801399","wikidata":"https://www.wikidata.org/wiki/Q25428","display_name":"Voltage","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/978-3-031-58547-0_6","pdf_url":null,"source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":6,"referenced_works":["https://openalex.org/W2015627422","https://openalex.org/W2295598076","https://openalex.org/W2328056838","https://openalex.org/W2910588064","https://openalex.org/W3174086521","https://openalex.org/W3216660278"],"related_works":["https://openalex.org/W4390860632","https://openalex.org/W4375867731","https://openalex.org/W4308112567","https://openalex.org/W4230611425","https://openalex.org/W3162132941","https://openalex.org/W3136871737","https://openalex.org/W3128189270","https://openalex.org/W3124943098","https://openalex.org/W2611989081","https://openalex.org/W2558685994"],"abstract_inverted_index":{"Recent":[0],"machine":[1,144],"learning":[2,21,104,145],"studies":[3,33],"on":[4,50],"tabular":[5,141],"data":[6,142],"show":[7],"that":[8,98,127],"ensembles":[9,68],"of":[10],"decision":[11],"tree":[12,67,90,109],"models":[13,22,85,105],"are":[14,34,86,164],"more":[15,113],"efficient":[16],"and":[17,38,58,69,79,124,154,159],"performant":[18],"than":[19,108],"deep":[20,103],"such":[23],"as":[24,29],"Tabular":[25,70,83],"Transformer":[26,71,84],"models.":[27,72,92,110],"However,":[28],"we":[30,48,74,96],"demonstrate,":[31],"these":[32],"limited":[35],"in":[36,120,143,148],"scope":[37],"do":[39],"not":[40],"paint":[41],"the":[42,62,121],"full":[43],"picture.":[44],"In":[45],"this":[46],"work,":[47],"focus":[49],"how":[51],"two":[52],"dataset":[53,56,134],"properties,":[54],"namely":[55],"size":[57],"feature":[59,117],"complexity,":[60],"affect":[61],"empirical":[63,94],"performance":[64],"comparison":[65],"between":[66],"Specifically,":[73],"employ":[75],"a":[76,138],"hypothesis-driven":[77],"approach":[78],"identify":[80],"situations":[81],"where":[82,152],"expected":[87],"to":[88,133],"outperform":[89],"ensemble":[91],"Through":[93],"evaluation,":[95],"demonstrate":[97],"given":[99,122],"large":[100],"enough":[101],"datasets,":[102],"perform":[106],"better":[107],"This":[111],"gets":[112],"pronounced":[114],"when":[115,136],"complex":[116],"interactions":[118],"exist":[119],"task":[123],"dataset,":[125],"suggesting":[126],"one":[128],"must":[129],"pay":[130],"careful":[131],"attention":[132],"properties":[135],"selecting":[137],"model":[139],"for":[140],"\u2013":[146],"especially":[147],"an":[149],"industrial":[150],"setting,":[151],"larger":[153,155],"datasets":[156],"with":[157],"less":[158,160],"carefully":[161],"engineered":[162],"features":[163],"becoming":[165],"routinely":[166],"available.":[167]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4394828645","counts_by_year":[],"updated_date":"2024-10-16T20:21:58.416702","created_date":"2024-04-16"}