{"id":"https://openalex.org/W3208913200","doi":"https://doi.org/10.1007/978-3-030-88494-9_7","title":"Neural Predictive Monitoring Under Partial Observability","display_name":"Neural Predictive Monitoring Under Partial Observability","publication_year":2021,"publication_date":"2021-01-01","ids":{"openalex":"https://openalex.org/W3208913200","doi":"https://doi.org/10.1007/978-3-030-88494-9_7","mag":"3208913200"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/978-3-030-88494-9_7","pdf_url":null,"source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"book-chapter","type_crossref":"book-chapter","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2108.07134","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5000007208","display_name":"Francesca Cairoli","orcid":"https://orcid.org/0000-0002-6994-6553"},"institutions":[{"id":"https://openalex.org/I142444530","display_name":"University of Trieste","ror":"https://ror.org/02n742c10","country_code":"IT","type":"education","lineage":["https://openalex.org/I142444530"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Francesca Cairoli","raw_affiliation_strings":["Department of Mathematics and Geosciences, Universit\u00e0 di Trieste, Trieste, Italy"],"affiliations":[{"raw_affiliation_string":"Department of Mathematics and Geosciences, Universit\u00e0 di Trieste, Trieste, Italy","institution_ids":["https://openalex.org/I142444530"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5060744592","display_name":"Luca Bortolussi","orcid":"https://orcid.org/0000-0001-8874-4001"},"institutions":[{"id":"https://openalex.org/I142444530","display_name":"University of Trieste","ror":"https://ror.org/02n742c10","country_code":"IT","type":"education","lineage":["https://openalex.org/I142444530"]},{"id":"https://openalex.org/I91712215","display_name":"Saarland University","ror":"https://ror.org/01jdpyv68","country_code":"DE","type":"education","lineage":["https://openalex.org/I91712215"]}],"countries":["DE","IT"],"is_corresponding":false,"raw_author_name":"Luca Bortolussi","raw_affiliation_strings":["Department of Mathematics and Geosciences, Universit\u00e0 di Trieste, Trieste, Italy","Modeling and Simulation Group, Saarland University, Saarbr\u00fccken, Germany"],"affiliations":[{"raw_affiliation_string":"Department of Mathematics and Geosciences, Universit\u00e0 di Trieste, Trieste, Italy","institution_ids":["https://openalex.org/I142444530"]},{"raw_affiliation_string":"Modeling and Simulation Group, Saarland University, Saarbr\u00fccken, Germany","institution_ids":["https://openalex.org/I91712215"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5016140478","display_name":"Nicola Paoletti","orcid":"https://orcid.org/0000-0002-4723-5363"},"institutions":[{"id":"https://openalex.org/I184558857","display_name":"Royal Holloway University of London","ror":"https://ror.org/04g2vpn86","country_code":"GB","type":"education","lineage":["https://openalex.org/I124357947","https://openalex.org/I184558857"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Nicola Paoletti","raw_affiliation_strings":["Department of Computer Science, Royal Holloway University, London, Egham, UK"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, Royal Holloway University, London, Egham, UK","institution_ids":["https://openalex.org/I184558857"]}]}],"institution_assertions":[],"countries_distinct_count":3,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":5000,"currency":"EUR","value_usd":5392,"provenance":"doaj"},"apc_paid":null,"fwci":13.184,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":13,"citation_normalized_percentile":{"value":0.964619,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":90,"max":91},"biblio":{"volume":null,"issue":null,"first_page":"121","last_page":"141"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10876","display_name":"Process Fault Detection and Diagnosis in Industries","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10876","display_name":"Process Fault Detection and Diagnosis in Industries","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Deep Learning Models","score":0.9967,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection in High-Dimensional Data","score":0.9949,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/observability","display_name":"Observability","score":0.9483476},{"id":"https://openalex.org/keywords/process-monitoring","display_name":"Process Monitoring","score":0.528834},{"id":"https://openalex.org/keywords/uncertainty-estimation","display_name":"Uncertainty Estimation","score":0.503397}],"concepts":[{"id":"https://openalex.org/C36299963","wikidata":"https://www.wikidata.org/wiki/Q1369844","display_name":"Observability","level":2,"score":0.9483476},{"id":"https://openalex.org/C136643341","wikidata":"https://www.wikidata.org/wiki/Q1361526","display_name":"Reachability","level":2,"score":0.9344387},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8078528},{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.61318064},{"id":"https://openalex.org/C43214815","wikidata":"https://www.wikidata.org/wiki/Q7310987","display_name":"Reliability (semiconductor)","level":3,"score":0.5601293},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.53947514},{"id":"https://openalex.org/C48103436","wikidata":"https://www.wikidata.org/wiki/Q599031","display_name":"State (computer science)","level":2,"score":0.4595093},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.41637436},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.41430607},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.41024256},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.10554057},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.06810722},{"id":"https://openalex.org/C163258240","wikidata":"https://www.wikidata.org/wiki/Q25342","display_name":"Power (physics)","level":2,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/978-3-030-88494-9_7","pdf_url":null,"source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2108.07134","pdf_url":"https://arxiv.org/pdf/2108.07134","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://hdl.handle.net/11368/2998179","pdf_url":"https://arts.units.it/bitstream/11368/2998179/4/2998179_Cairoli2021_Chapter_NeuralPredictiveMonitoringUnde-Post_print.pdf","source":{"id":"https://openalex.org/S4306400480","display_name":"ArTS Archivio della ricerca di Trieste (University of Trieste https://www.units.it/)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I142444530","host_organization_name":"University of Trieste","host_organization_lineage":["https://openalex.org/I142444530"],"host_organization_lineage_names":["University of Trieste"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2108.07134","pdf_url":"https://arxiv.org/pdf/2108.07134","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.41,"id":"https://metadata.un.org/sdg/16","display_name":"Peace, justice, and strong institutions"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":36,"referenced_works":["https://openalex.org/W1485467598","https://openalex.org/W151929830","https://openalex.org/W1521746852","https://openalex.org/W1553101044","https://openalex.org/W172589331","https://openalex.org/W1749494163","https://openalex.org/W180784818","https://openalex.org/W2121167614","https://openalex.org/W2156093990","https://openalex.org/W2157413433","https://openalex.org/W2164090329","https://openalex.org/W2187041056","https://openalex.org/W2279014940","https://openalex.org/W2613607093","https://openalex.org/W2731600756","https://openalex.org/W2785700716","https://openalex.org/W2810469995","https://openalex.org/W2899771611","https://openalex.org/W2938769851","https://openalex.org/W2964130946","https://openalex.org/W2978287595","https://openalex.org/W3016340462","https://openalex.org/W3081016801","https://openalex.org/W3081262891","https://openalex.org/W3098560806","https://openalex.org/W3104466477","https://openalex.org/W3115900573","https://openalex.org/W3132304327","https://openalex.org/W3154370202","https://openalex.org/W3158987425","https://openalex.org/W3164490100","https://openalex.org/W3184761245","https://openalex.org/W3194667842","https://openalex.org/W3208913200","https://openalex.org/W3217326642","https://openalex.org/W584332710"],"related_works":["https://openalex.org/W2967463586","https://openalex.org/W2791750487","https://openalex.org/W2765830098","https://openalex.org/W2753578936","https://openalex.org/W2153544183","https://openalex.org/W2138317614","https://openalex.org/W2046459260","https://openalex.org/W1971989957","https://openalex.org/W1884874476","https://openalex.org/W1606997444"],"abstract_inverted_index":{"We":[0,21,80,107,158],"consider":[1],"the":[2,18,24,35,45,50,54,57,104,120,146,160,174],"problem":[3],"of":[4,14,34,49,56,148,155],"predictive":[5,156],"monitoring":[6],"(PM),":[7],"i.e.,":[8],"predicting":[9],"at":[10,39],"runtime":[11],"future":[12],"violations":[13],"a":[15,64,87,124],"system":[16],"from":[17],"current":[19],"state.":[20],"work":[22],"under":[23],"most":[25],"realistic":[26],"settings":[27,42],"where":[28],"only":[29],"partial":[30,77],"and":[31,47,72,100,109,123,151,169,172,191],"noisy":[32],"observations":[33],"state":[36,131],"are":[37],"available":[38],"runtime.":[40],"Such":[41],"directly":[43,117],"affect":[44],"accuracy":[46],"reliability":[48],"reachability":[51,74,189],"predictions,":[52],"jeopardizing":[53],"safety":[55],"system.":[58],"In":[59],"this":[60],"work,":[61],"we":[62],"present":[63],"learning-based":[65],"method":[66,89,184],"for":[67,95],"PM":[68,88],"that":[69,90],"produces":[70],"accurate":[71,188],"reliable":[73],"predictions":[75,168,190],"despite":[76],"observability":[78],"(PO).":[79],"build":[81],"on":[82,119,137,176],"Neural":[83],"Predictive":[84],"Monitoring":[85],"(NPM),":[86],"uses":[91],"deep":[92],"neural":[93],"networks":[94],"approximating":[96],"hybrid":[97],"systems":[98],"reachability,":[99],"extend":[101],"it":[102],"to":[103,140,162,170],"PO":[105],"case.":[106],"propose":[108],"compare":[110],"two":[111],"solutions,":[112],"an":[113,129],"end-to-end":[114],"approach,":[115,126],"which":[116,127],"operates":[118],"rough":[121],"observations,":[122],"two-step":[125],"introduces":[128],"intermediate":[130],"estimation":[132],"step.":[133],"Both":[134],"solutions":[135],"rely":[136],"conformal":[138],"prediction":[139,149,198],"provide":[141],"1)":[142],"probabilistic":[143],"guarantees":[144],"in":[145,186],"form":[147],"regions":[150,199],"2)":[152],"sound":[153],"estimates":[154],"uncertainty.":[157],"use":[159],"latter":[161],"identify":[163],"unreliable":[164],"(and":[165],"likely":[166],"erroneous)":[167],"retrain":[171],"improve":[173],"monitors":[175],"these":[177],"uncertain":[178],"inputs":[179],"(i.e.,":[180],"active":[181],"learning).":[182],"Our":[183],"results":[185],"highly":[187],"error":[192],"detection,":[193],"as":[194,196],"well":[195],"tight":[197],"with":[200],"guaranteed":[201],"coverage.":[202]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3208913200","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":6},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":3}],"updated_date":"2024-10-30T06:28:13.193688","created_date":"2021-11-08"}