iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1007/978-3-030-72087-2_3
{"id":"https://openalex.org/W3150580094","doi":"https://doi.org/10.1007/978-3-030-72087-2_3","title":"Efficient MRI Brain Tumor Segmentation Using Multi-resolution Encoder-Decoder Networks","display_name":"Efficient MRI Brain Tumor Segmentation Using Multi-resolution Encoder-Decoder Networks","publication_year":2021,"publication_date":"2021-01-01","ids":{"openalex":"https://openalex.org/W3150580094","doi":"https://doi.org/10.1007/978-3-030-72087-2_3","mag":"3150580094"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/978-3-030-72087-2_3","pdf_url":null,"source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"book-chapter","type_crossref":"book-chapter","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5072021625","display_name":"Mohammadreza Soltaninejad","orcid":"https://orcid.org/0000-0002-9889-4369"},"institutions":[{"id":"https://openalex.org/I142263535","display_name":"University of Nottingham","ror":"https://ror.org/01ee9ar58","country_code":"GB","type":"education","lineage":["https://openalex.org/I142263535"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Mohammadreza Soltaninejad","raw_affiliation_strings":["Computer Vision Lab, School of Computer Science, University of Nottingham, Nottingham, UK"],"affiliations":[{"raw_affiliation_string":"Computer Vision Lab, School of Computer Science, University of Nottingham, Nottingham, UK","institution_ids":["https://openalex.org/I142263535"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5042809328","display_name":"Tony Pridmore","orcid":"https://orcid.org/0000-0002-9485-1978"},"institutions":[{"id":"https://openalex.org/I142263535","display_name":"University of Nottingham","ror":"https://ror.org/01ee9ar58","country_code":"GB","type":"education","lineage":["https://openalex.org/I142263535"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Tony Pridmore","raw_affiliation_strings":["Computer Vision Lab, School of Computer Science, University of Nottingham, Nottingham, UK"],"affiliations":[{"raw_affiliation_string":"Computer Vision Lab, School of Computer Science, University of Nottingham, Nottingham, UK","institution_ids":["https://openalex.org/I142263535"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5072892248","display_name":"Michael P. Pound","orcid":"https://orcid.org/0000-0002-5016-1078"},"institutions":[{"id":"https://openalex.org/I142263535","display_name":"University of Nottingham","ror":"https://ror.org/01ee9ar58","country_code":"GB","type":"education","lineage":["https://openalex.org/I142263535"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Michael Pound","raw_affiliation_strings":["Computer Vision Lab, School of Computer Science, University of Nottingham, Nottingham, UK"],"affiliations":[{"raw_affiliation_string":"Computer Vision Lab, School of Computer Science, University of Nottingham, Nottingham, UK","institution_ids":["https://openalex.org/I142263535"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":5000,"currency":"EUR","value_usd":5392,"provenance":"doaj"},"apc_paid":null,"fwci":4.733,"has_fulltext":false,"cited_by_count":12,"citation_normalized_percentile":{"value":0.999753,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":89,"max":90},"biblio":{"volume":null,"issue":null,"first_page":"30","last_page":"39"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12702","display_name":"Classification of Brain Tumor Type and Grade","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/2808","display_name":"Neurology"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},"topics":[{"id":"https://openalex.org/T12702","display_name":"Classification of Brain Tumor Type and Grade","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/2808","display_name":"Neurology"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Deep Learning in Computer Vision and Image Recognition","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10052","display_name":"Image Segmentation Techniques","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/ground-truth","display_name":"Ground truth","score":0.6240694},{"id":"https://openalex.org/keywords/mri-segmentation","display_name":"MRI Segmentation","score":0.623124},{"id":"https://openalex.org/keywords/image-segmentation","display_name":"Image Segmentation","score":0.589679},{"id":"https://openalex.org/keywords/semantic-segmentation","display_name":"Semantic Segmentation","score":0.537449},{"id":"https://openalex.org/keywords/brain-tumors","display_name":"Brain Tumors","score":0.528942},{"id":"https://openalex.org/keywords/medical-image-analysis","display_name":"Medical Image Analysis","score":0.517146}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8664508},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.7303077},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6665203},{"id":"https://openalex.org/C146849305","wikidata":"https://www.wikidata.org/wiki/Q370766","display_name":"Ground truth","level":2,"score":0.6240694},{"id":"https://openalex.org/C118505674","wikidata":"https://www.wikidata.org/wiki/Q42586063","display_name":"Encoder","level":2,"score":0.6097212},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5256109},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.51159865},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.5000162},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.45200628},{"id":"https://openalex.org/C169258074","wikidata":"https://www.wikidata.org/wiki/Q245748","display_name":"Random forest","level":2,"score":0.42196304},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.32455456},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/978-3-030-72087-2_3","pdf_url":null,"source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Life on land","id":"https://metadata.un.org/sdg/15","score":0.65}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":14,"referenced_works":["https://openalex.org/W1641498739","https://openalex.org/W1901129140","https://openalex.org/W1903029394","https://openalex.org/W2063552084","https://openalex.org/W2117340355","https://openalex.org/W2307770531","https://openalex.org/W2751069891","https://openalex.org/W2788093030","https://openalex.org/W2899771611","https://openalex.org/W2903554604","https://openalex.org/W2911964244","https://openalex.org/W2914493539","https://openalex.org/W3018093250","https://openalex.org/W3025055875"],"related_works":["https://openalex.org/W4386259002","https://openalex.org/W4308716060","https://openalex.org/W4295532600","https://openalex.org/W4280648719","https://openalex.org/W3193043704","https://openalex.org/W3171520305","https://openalex.org/W3135126032","https://openalex.org/W2063823869","https://openalex.org/W1924178503","https://openalex.org/W1546989560"],"abstract_inverted_index":{"In":[0],"this":[1],"paper,":[2],"we":[3,67],"propose":[4,68],"an":[5],"automated":[6,89],"three":[7],"dimensional":[8],"(3D)":[9],"deep":[10],"learning":[11],"approach":[12],"for":[13,81,168,185,197,214,223],"the":[14,62,78,82,113,139,174,186,198,211,215,224],"segmentation":[15,59,159,172],"of":[16,34,64,103,120,160,173,210],"gliomas":[17],"in":[18],"pre-operative":[19],"brain":[20,161,170],"MRI":[21],"scans.":[22],"We":[23,48,107],"introduce":[24],"a":[25,51,69,143],"state-of-the-art":[26],"multi-resolution":[27],"architecture":[28],"based":[29,72],"on":[30,73,100,112,127,134],"encoder-decoder":[31],"which":[32],"comprise":[33],"separate":[35],"branches":[36],"to":[37,56,76,92],"incorporate":[38],"local":[39],"high-resolution":[40],"image":[41],"features":[42],"and":[43,90,124,132,149,183,190,204,221,226],"wider":[44],"low-resolution":[45],"contextual":[46],"information.":[47],"also":[49],"used":[50],"unified":[52],"multi-task":[53],"loss":[54],"function":[55],"provide":[57],"end-to-end":[58],"training.":[60],"For":[61],"task":[63],"survival":[65,79,216],"prediction,":[66],"regression":[70],"algorithm":[71],"random":[74],"forests":[75],"predict":[77],"days":[80],"patients.":[83],"Our":[84],"proposed":[85,110,155,212],"network":[86,111,156],"is":[87],"fully":[88],"designed":[91],"take":[93],"input":[94,101],"as":[95],"patches":[96],"that":[97,118,153],"can":[98],"work":[99],"images":[102],"any":[104],"arbitrary":[105],"size.":[106],"trained":[108],"our":[109,154],"BraTS":[114],"2020":[115],"challenge":[116],"dataset":[117,141,176,200],"consists":[119],"369":[121],"training":[122],"cases,":[123],"then":[125],"validated":[126],"125":[128],"unseen":[129,136],"validation":[130,175,225],"datasets,":[131,228],"tested":[133],"166":[135],"cases":[137],"from":[138],"testing":[140,145,199,227],"using":[142],"blind":[144],"approach.":[146],"The":[147,163,194,207],"quantitative":[148],"qualitative":[150],"results":[151,196],"demonstrate":[152],"provides":[157],"efficient":[158],"tumors.":[162],"mean":[164],"Dice":[165],"overlap":[166],"measures":[167,209],"automatic":[169],"tumor":[171],"against":[177],"ground":[178],"truth":[179],"are":[180,201,219],"0.87,":[181],"0.80,":[182],"0.66":[184],"whole":[187],"tumor,":[188,192],"core,":[189],"enhancing":[191],"respectively.":[193,206,229],"corresponding":[195],"0.78,":[202],"0.70,":[203],"0.66,":[205],"accuracy":[208],"model":[213],"prediction":[217],"tasks":[218],"0.45":[220],"0.505":[222]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3150580094","counts_by_year":[{"year":2024,"cited_by_count":4},{"year":2023,"cited_by_count":5},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":1}],"updated_date":"2024-11-06T08:09:43.000812","created_date":"2021-04-13"}