{"id":"https://openalex.org/W3128568455","doi":"https://doi.org/10.1007/978-3-030-67835-7_23","title":"On Fusion of Learned and Designed Features for Video Data Analytics","display_name":"On Fusion of Learned and Designed Features for Video Data Analytics","publication_year":2021,"publication_date":"2021-01-01","ids":{"openalex":"https://openalex.org/W3128568455","doi":"https://doi.org/10.1007/978-3-030-67835-7_23","mag":"3128568455"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/978-3-030-67835-7_23","pdf_url":null,"source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"book-chapter","type_crossref":"book-chapter","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5080309063","display_name":"Marek Dobransk\u00fd","orcid":null},"institutions":[{"id":"https://openalex.org/I21250087","display_name":"Charles University","ror":"https://ror.org/024d6js02","country_code":"CZ","type":"education","lineage":["https://openalex.org/I21250087"]}],"countries":["CZ"],"is_corresponding":false,"raw_author_name":"Marek Dobransk\u00fd","raw_affiliation_strings":["SIRET Research Group, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic"],"affiliations":[{"raw_affiliation_string":"SIRET Research Group, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic","institution_ids":["https://openalex.org/I21250087"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5013042933","display_name":"Tom\u00e1\u0161 Skopal","orcid":"https://orcid.org/0000-0002-6591-0879"},"institutions":[{"id":"https://openalex.org/I21250087","display_name":"Charles University","ror":"https://ror.org/024d6js02","country_code":"CZ","type":"education","lineage":["https://openalex.org/I21250087"]}],"countries":["CZ"],"is_corresponding":false,"raw_author_name":"Tom\u00e1\u0161 Skopal","raw_affiliation_strings":["SIRET Research Group, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic"],"affiliations":[{"raw_affiliation_string":"SIRET Research Group, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic","institution_ids":["https://openalex.org/I21250087"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":5000,"currency":"EUR","value_usd":5392,"provenance":"doaj"},"apc_paid":null,"fwci":0.43,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.514236,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":58,"max":68},"biblio":{"volume":null,"issue":null,"first_page":"268","last_page":"280"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10331","display_name":"Visual Object Tracking and Person Re-identification","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10331","display_name":"Visual Object Tracking and Person Re-identification","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10812","display_name":"Human Action Recognition and Pose Estimation","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection in High-Dimensional Data","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/abstraction","display_name":"Abstraction","score":0.6181251},{"id":"https://openalex.org/keywords/visual-tracking","display_name":"Visual Tracking","score":0.544199},{"id":"https://openalex.org/keywords/video-analysis","display_name":"Video Analysis","score":0.541363},{"id":"https://openalex.org/keywords/real-time-tracking","display_name":"Real-time Tracking","score":0.534337},{"id":"https://openalex.org/keywords/multiple-object-tracking","display_name":"Multiple Object Tracking","score":0.531182},{"id":"https://openalex.org/keywords/action-recognition","display_name":"Action Recognition","score":0.521866},{"id":"https://openalex.org/keywords/sensor-fusion","display_name":"Sensor fusion","score":0.41424268}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8744857},{"id":"https://openalex.org/C79158427","wikidata":"https://www.wikidata.org/wiki/Q485396","display_name":"Analytics","level":2,"score":0.6209505},{"id":"https://openalex.org/C124304363","wikidata":"https://www.wikidata.org/wiki/Q673661","display_name":"Abstraction","level":2,"score":0.6181251},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.54559284},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.49562824},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.48718542},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.48207337},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.43086213},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.42148858},{"id":"https://openalex.org/C33954974","wikidata":"https://www.wikidata.org/wiki/Q486494","display_name":"Sensor fusion","level":2,"score":0.41424268},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.38891968},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3564064},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/978-3-030-67835-7_23","pdf_url":null,"source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.84,"id":"https://metadata.un.org/sdg/11","display_name":"Sustainable cities and communities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":32,"referenced_works":["https://openalex.org/W1573493856","https://openalex.org/W1732282755","https://openalex.org/W182666420","https://openalex.org/W1962025484","https://openalex.org/W1982925187","https://openalex.org/W2028260396","https://openalex.org/W2038044292","https://openalex.org/W2046835352","https://openalex.org/W2105934661","https://openalex.org/W2125909168","https://openalex.org/W2154688704","https://openalex.org/W2245583245","https://openalex.org/W2473868734","https://openalex.org/W2569718221","https://openalex.org/W2570343428","https://openalex.org/W2613718673","https://openalex.org/W2745285292","https://openalex.org/W2752236330","https://openalex.org/W2762316975","https://openalex.org/W2801036749","https://openalex.org/W2883910476","https://openalex.org/W2962790054","https://openalex.org/W2962803115","https://openalex.org/W2963037989","https://openalex.org/W2963510045","https://openalex.org/W2963910742","https://openalex.org/W2981716253","https://openalex.org/W299839057","https://openalex.org/W3000318171","https://openalex.org/W3034971973","https://openalex.org/W3106250896","https://openalex.org/W86213483"],"related_works":["https://openalex.org/W4375867731","https://openalex.org/W4313163053","https://openalex.org/W4300973204","https://openalex.org/W4284884309","https://openalex.org/W4243842598","https://openalex.org/W3045811229","https://openalex.org/W2908749798","https://openalex.org/W2105980483","https://openalex.org/W2045155990","https://openalex.org/W1483408780"],"abstract_inverted_index":{"Video":[0],"cameras":[1,20,41],"have":[2],"become":[3],"widely":[4],"used":[5],"for":[6,75,85,107,165,180,213],"indoor":[7],"and":[8,13,32,42,48,59,70,94,98,125,143,148,156],"outdoor":[9],"surveillance.":[10],"Covering":[11],"more":[12,14,163],"public":[15],"space":[16],"in":[17,101],"cities,":[18],"the":[19,36,66,72,118,126,141,150,208],"serve":[21],"various":[22,108],"purposes":[23],"ranging":[24],"from":[25],"security":[26],"to":[27,56,64,139],"traffic":[28],"monitoring,":[29],"urban":[30,219],"life,":[31],"marketing.":[33],"However,":[34,117],"with":[35,185],"increasing":[37],"quantity":[38],"of":[39,121,129,145,171,182,196,199,218],"utilized":[40],"recorded":[43],"streams,":[44],"manual":[45],"video":[46,67,87,216],"monitoring":[47],"analysis":[49,217],"becomes":[50],"too":[51],"laborious.":[52],"The":[53],"goal":[54],"is":[55,99],"obtain":[57],"effective":[58],"efficient":[60],"artificial":[61],"intelligence":[62],"models":[63,97,106,131],"process":[65],"data":[68,76,124,173,184],"automatically":[69],"produce":[71],"desired":[73],"features":[74],"analytics.":[77],"To":[78],"this":[79],"end,":[80],"we":[81,205],"propose":[82],"a":[83,202],"framework":[84,189,209],"real-time":[86],"feature":[88],"extraction":[89],"that":[90],"fuses":[91],"both":[92,153],"learned":[93],"hand-designed":[95],"analytical":[96,157,175],"applicable":[100],"real-life":[102],"situations.":[103],"Nowadays,":[104],"state-of-the-art":[105],"computer":[109],"vision":[110],"tasks":[111,167],"are":[112,162],"implemented":[113],"by":[114,193],"deep":[115,154],"learning.":[116],"exhaustive":[119],"gathering":[120],"labeled":[122],"training":[123],"computational":[127],"complexity":[128],"resulting":[130],"can":[132,177,210],"often":[133],"render":[134],"them":[135],"impractical.":[136],"We":[137],"need":[138],"consider":[140],"benefits":[142],"limitations":[144],"each":[146],"technique":[147],"find":[149],"synergy":[151],"between":[152],"learning":[155,160],"models.":[158],"Deep":[159],"methods":[161],"suited":[164],"simpler":[166],"on":[168],"large":[169],"volumes":[170],"dense":[172],"while":[174],"modeling":[176],"be":[178,211],"sufficient":[179],"processing":[181],"sparse":[183],"complex":[186],"structures.":[187],"Our":[188],"follows":[190],"those":[191],"principles":[192],"taking":[194],"advantage":[195],"multiple":[197],"levels":[198],"abstraction.":[200],"In":[201],"use":[203],"case,":[204],"show":[206],"how":[207],"set":[212],"an":[214],"advanced":[215],"life.":[220]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3128568455","counts_by_year":[{"year":2021,"cited_by_count":1}],"updated_date":"2024-09-14T23:01:36.875593","created_date":"2021-02-15"}