iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1007/978-3-030-61377-8_17
{"id":"https://openalex.org/W3097807933","doi":"https://doi.org/10.1007/978-3-030-61377-8_17","title":"Assessing Deep Learning Models for Human-Robot Collaboration Collision Detection in Industrial Environments","display_name":"Assessing Deep Learning Models for Human-Robot Collaboration Collision Detection in Industrial Environments","publication_year":2020,"publication_date":"2020-01-01","ids":{"openalex":"https://openalex.org/W3097807933","doi":"https://doi.org/10.1007/978-3-030-61377-8_17","mag":"3097807933"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/978-3-030-61377-8_17","pdf_url":null,"source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"book-chapter","type_crossref":"book-chapter","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5029323185","display_name":"Iago Richard Rodrigues","orcid":"https://orcid.org/0000-0002-8242-9059"},"institutions":[{"id":"https://openalex.org/I25112270","display_name":"Universidade Federal de Pernambuco","ror":"https://ror.org/047908t24","country_code":"BR","type":"education","lineage":["https://openalex.org/I25112270"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Iago R. R. Silva","raw_affiliation_strings":["Universidade Federal de Pernambuco, Recife, Brazil"],"affiliations":[{"raw_affiliation_string":"Universidade Federal de Pernambuco, Recife, Brazil","institution_ids":["https://openalex.org/I25112270"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5091145048","display_name":"Gibson Barbosa","orcid":"https://orcid.org/0000-0001-9023-4019"},"institutions":[{"id":"https://openalex.org/I25112270","display_name":"Universidade Federal de Pernambuco","ror":"https://ror.org/047908t24","country_code":"BR","type":"education","lineage":["https://openalex.org/I25112270"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Gibson B. N. Barbosa","raw_affiliation_strings":["Universidade Federal de Pernambuco, Recife, Brazil"],"affiliations":[{"raw_affiliation_string":"Universidade Federal de Pernambuco, Recife, Brazil","institution_ids":["https://openalex.org/I25112270"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5066091685","display_name":"Carolina Ledebour","orcid":null},"institutions":[{"id":"https://openalex.org/I25112270","display_name":"Universidade Federal de Pernambuco","ror":"https://ror.org/047908t24","country_code":"BR","type":"education","lineage":["https://openalex.org/I25112270"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Carolina C. D. Ledebour","raw_affiliation_strings":["Universidade Federal de Pernambuco, Recife, Brazil"],"affiliations":[{"raw_affiliation_string":"Universidade Federal de Pernambuco, Recife, Brazil","institution_ids":["https://openalex.org/I25112270"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5011682830","display_name":"Assis T. de Oliveira Filho","orcid":"https://orcid.org/0000-0001-9873-6929"},"institutions":[{"id":"https://openalex.org/I25112270","display_name":"Universidade Federal de Pernambuco","ror":"https://ror.org/047908t24","country_code":"BR","type":"education","lineage":["https://openalex.org/I25112270"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Assis T. Oliveira Filho","raw_affiliation_strings":["Universidade Federal de Pernambuco, Recife, Brazil"],"affiliations":[{"raw_affiliation_string":"Universidade Federal de Pernambuco, Recife, Brazil","institution_ids":["https://openalex.org/I25112270"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5026724035","display_name":"Judith Kelner","orcid":"https://orcid.org/0000-0002-2673-5887"},"institutions":[{"id":"https://openalex.org/I25112270","display_name":"Universidade Federal de Pernambuco","ror":"https://ror.org/047908t24","country_code":"BR","type":"education","lineage":["https://openalex.org/I25112270"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Judith Kelner","raw_affiliation_strings":["Universidade Federal de Pernambuco, Recife, Brazil"],"affiliations":[{"raw_affiliation_string":"Universidade Federal de Pernambuco, Recife, Brazil","institution_ids":["https://openalex.org/I25112270"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5014967408","display_name":"Djamel Sadok","orcid":"https://orcid.org/0000-0001-5378-4732"},"institutions":[{"id":"https://openalex.org/I25112270","display_name":"Universidade Federal de Pernambuco","ror":"https://ror.org/047908t24","country_code":"BR","type":"education","lineage":["https://openalex.org/I25112270"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Djamel Sadok","raw_affiliation_strings":["Universidade Federal de Pernambuco, Recife, Brazil"],"affiliations":[{"raw_affiliation_string":"Universidade Federal de Pernambuco, Recife, Brazil","institution_ids":["https://openalex.org/I25112270"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5010050881","display_name":"Silvia Lins","orcid":"https://orcid.org/0000-0001-5160-7177"},"institutions":[],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Silvia Lins","raw_affiliation_strings":["Centro de Inova\u00e7\u00f5es, Ericsson, Brazil"],"affiliations":[{"raw_affiliation_string":"Centro de Inova\u00e7\u00f5es, Ericsson, Brazil","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5078741044","display_name":"Ricardo Souza","orcid":"https://orcid.org/0000-0001-6665-9228"},"institutions":[],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Ricardo Souza","raw_affiliation_strings":["Centro de Inova\u00e7\u00f5es, Ericsson, Brazil"],"affiliations":[{"raw_affiliation_string":"Centro de Inova\u00e7\u00f5es, Ericsson, Brazil","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":5000,"currency":"EUR","value_usd":5392,"provenance":"doaj"},"apc_paid":null,"fwci":0.931,"has_fulltext":false,"cited_by_count":5,"citation_normalized_percentile":{"value":0.792319,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":79,"max":81},"biblio":{"volume":null,"issue":null,"first_page":"240","last_page":"255"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection in High-Dimensional Data","score":0.9941,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection in High-Dimensional Data","score":0.9941,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Deep Learning in Computer Vision and Image Recognition","score":0.991,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12111","display_name":"Fabric Defect Detection in Industrial Applications","score":0.9895,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/factory","display_name":"Factory (object-oriented programming)","score":0.5617469},{"id":"https://openalex.org/keywords/object-detection","display_name":"Object Detection","score":0.520962},{"id":"https://openalex.org/keywords/surface-defect-detection","display_name":"Surface Defect Detection","score":0.510058},{"id":"https://openalex.org/keywords/machine-vision","display_name":"Machine Vision","score":0.500167}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7703165},{"id":"https://openalex.org/C90509273","wikidata":"https://www.wikidata.org/wiki/Q11012","display_name":"Robot","level":2,"score":0.7593329},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.63333476},{"id":"https://openalex.org/C199668693","wikidata":"https://www.wikidata.org/wiki/Q1550329","display_name":"Collision detection","level":3,"score":0.6268965},{"id":"https://openalex.org/C121704057","wikidata":"https://www.wikidata.org/wiki/Q352070","display_name":"Collision","level":2,"score":0.62685907},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.60665345},{"id":"https://openalex.org/C2780864053","wikidata":"https://www.wikidata.org/wiki/Q5147495","display_name":"Collision avoidance","level":3,"score":0.59285235},{"id":"https://openalex.org/C115901376","wikidata":"https://www.wikidata.org/wiki/Q184199","display_name":"Automation","level":2,"score":0.5765294},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.5707447},{"id":"https://openalex.org/C40149104","wikidata":"https://www.wikidata.org/wiki/Q5620977","display_name":"Factory (object-oriented programming)","level":2,"score":0.5617469},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.46342885},{"id":"https://openalex.org/C51399673","wikidata":"https://www.wikidata.org/wiki/Q504027","display_name":"Lidar","level":2,"score":0.4444016},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.39412397},{"id":"https://openalex.org/C44154836","wikidata":"https://www.wikidata.org/wiki/Q45045","display_name":"Simulation","level":1,"score":0.35624588},{"id":"https://openalex.org/C79403827","wikidata":"https://www.wikidata.org/wiki/Q3988","display_name":"Real-time computing","level":1,"score":0.3324408},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.15627334},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.11043638},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.09855062},{"id":"https://openalex.org/C62649853","wikidata":"https://www.wikidata.org/wiki/Q199687","display_name":"Remote sensing","level":1,"score":0.08011332},{"id":"https://openalex.org/C78519656","wikidata":"https://www.wikidata.org/wiki/Q101333","display_name":"Mechanical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/978-3-030-61377-8_17","pdf_url":null,"source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":15,"referenced_works":["https://openalex.org/W2074574557","https://openalex.org/W2108598243","https://openalex.org/W2112796928","https://openalex.org/W2132651916","https://openalex.org/W2221590109","https://openalex.org/W2515936176","https://openalex.org/W2612445135","https://openalex.org/W2809251723","https://openalex.org/W2893801338","https://openalex.org/W2962835968","https://openalex.org/W2964121744","https://openalex.org/W2967802456","https://openalex.org/W2978285803","https://openalex.org/W3009220630","https://openalex.org/W4285719527"],"related_works":["https://openalex.org/W4390887692","https://openalex.org/W4319837668","https://openalex.org/W4319317934","https://openalex.org/W4308071650","https://openalex.org/W4281783339","https://openalex.org/W4221065211","https://openalex.org/W3188333020","https://openalex.org/W2956374172","https://openalex.org/W2901265155","https://openalex.org/W1964041166"],"abstract_inverted_index":{"The":[0,158],"increasing":[1],"adoption":[2],"of":[3,48,69,135,171],"industrial":[4,43,156,165],"robots":[5],"to":[6,25,73],"boost":[7],"production":[8],"efficiency":[9],"is":[10,45],"turning":[11],"human-robot":[12,78,152],"collaborative":[13],"scenarios":[14],"much":[15],"more":[16,132],"frequent.":[17],"In":[18],"this":[19,64,119],"context,":[20],"technical":[21],"factory":[22],"workers":[23],"need":[24],"be":[26,149],"safe":[27],"at":[28],"all":[29],"times":[30],"from":[31,117],"collisions":[32],"and":[33,37,167],"prepare":[34],"for":[35,58,90,151],"emergencies":[36],"potential":[38],"accidents.":[39,173],"Another":[40],"trend":[41],"in":[42,77,98,137,155,164],"automation":[44],"the":[46,67,86,99,138,169],"usage":[47],"machine":[49],"learning":[50,55,71,146],"techniques":[51],"-":[52,57],"specifically,":[53],"deep":[54,70,145],"algorithms":[56,147],"image":[59],"classification.":[60],"Following":[61],"these":[62],"tendencies,":[63],"work":[65,120],"evaluates":[66],"application":[68],"models":[72,160],"detect":[74],"physical":[75],"collision":[76,92,153,172],"interactions.":[79],"Security":[80],"camera":[81],"images":[82],"are":[83],"used":[84],"as":[85],"primary":[87],"information":[88],"source":[89],"intelligent":[91],"detection.":[93],"Unlike":[94],"other":[95],"proposed":[96,159],"approaches":[97,143],"literature":[100],"that":[101,142],"apply":[102],"sensors":[103,116],"like":[104],"Light":[105],"Detection":[106],"And":[107],"Ranging":[108],"(LIDAR),":[109],"Laser":[110],"Range":[111],"Finder":[112],"(LRF),":[113],"or":[114],"torque":[115],"robots,":[118],"does":[121],"not":[122],"consider":[123],"extra":[124],"sensors,":[125],"using":[126],"only":[127],"2D":[128],"cameras.":[129],"Results":[130],"show":[131],"than":[133],"99%":[134],"accuracy":[136],"evaluated":[139],"scenarios,":[140],"revealing":[141],"adopting":[144],"could":[148],"promising":[150],"avoidance":[154],"scenarios.":[157],"may":[161],"support":[162],"safety":[163],"environments":[166],"reduce":[168],"impact":[170]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3097807933","counts_by_year":[{"year":2022,"cited_by_count":3},{"year":2021,"cited_by_count":1}],"updated_date":"2024-11-24T23:48:32.829214","created_date":"2020-11-09"}