{"id":"https://openalex.org/W3022739968","doi":"https://doi.org/10.1007/978-3-030-47358-7_51","title":"Improving Classification Using Topic Correlation and Expectation Propagation","display_name":"Improving Classification Using Topic Correlation and Expectation Propagation","publication_year":2020,"publication_date":"2020-01-01","ids":{"openalex":"https://openalex.org/W3022739968","doi":"https://doi.org/10.1007/978-3-030-47358-7_51","mag":"3022739968"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/978-3-030-47358-7_51","pdf_url":null,"source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"book-chapter","type_crossref":"book-chapter","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5024472112","display_name":"Xavier Sumba","orcid":"https://orcid.org/0000-0002-4475-079X"},"institutions":[{"id":"https://openalex.org/I60158472","display_name":"Concordia University","ror":"https://ror.org/0420zvk78","country_code":"CA","type":"education","lineage":["https://openalex.org/I60158472"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Xavier Sumba","raw_affiliation_strings":["Concordia University, Montreal, Canada"],"affiliations":[{"raw_affiliation_string":"Concordia University, Montreal, Canada","institution_ids":["https://openalex.org/I60158472"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5090600716","display_name":"Nizar Bouguila","orcid":"https://orcid.org/0000-0001-7224-7940"},"institutions":[{"id":"https://openalex.org/I60158472","display_name":"Concordia University","ror":"https://ror.org/0420zvk78","country_code":"CA","type":"education","lineage":["https://openalex.org/I60158472"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Nizar Bouguila","raw_affiliation_strings":["Concordia University, Montreal, Canada"],"affiliations":[{"raw_affiliation_string":"Concordia University, Montreal, Canada","institution_ids":["https://openalex.org/I60158472"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":5000,"currency":"EUR","value_usd":5392,"provenance":"doaj"},"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":61},"biblio":{"volume":null,"issue":null,"first_page":"496","last_page":"507"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T13910","display_name":"Computational Text Analysis in Social Sciences","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/3300","display_name":"General Social Sciences"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T13910","display_name":"Computational Text Analysis in Social Sciences","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/3300","display_name":"General Social Sciences"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10028","display_name":"Natural Language Processing","score":0.9957,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13083","display_name":"Automatic Keyword Extraction from Textual Data","score":0.9911,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/topic-modeling","display_name":"Topic Modeling","score":0.641783},{"id":"https://openalex.org/keywords/natural-language-processing","display_name":"Natural Language Processing","score":0.516996},{"id":"https://openalex.org/keywords/pretrained-models","display_name":"Pretrained Models","score":0.508154},{"id":"https://openalex.org/keywords/automated-text-classification","display_name":"Automated Text Classification","score":0.503027},{"id":"https://openalex.org/keywords/text-data-methods","display_name":"Text Data Methods","score":0.502591},{"id":"https://openalex.org/keywords/independence","display_name":"Independence (probability theory)","score":0.43861893}],"concepts":[{"id":"https://openalex.org/C500882744","wikidata":"https://www.wikidata.org/wiki/Q269236","display_name":"Latent Dirichlet allocation","level":3,"score":0.7690218},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6642581},{"id":"https://openalex.org/C169214877","wikidata":"https://www.wikidata.org/wiki/Q981016","display_name":"Dirichlet distribution","level":3,"score":0.6461655},{"id":"https://openalex.org/C171686336","wikidata":"https://www.wikidata.org/wiki/Q3532085","display_name":"Topic model","level":2,"score":0.5837397},{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.5596125},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4781707},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.4528034},{"id":"https://openalex.org/C165216359","wikidata":"https://www.wikidata.org/wiki/Q670653","display_name":"Marginal distribution","level":3,"score":0.43916452},{"id":"https://openalex.org/C35651441","wikidata":"https://www.wikidata.org/wiki/Q625303","display_name":"Independence (probability theory)","level":2,"score":0.43861893},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.37569058},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.260564},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.22232693},{"id":"https://openalex.org/C122123141","wikidata":"https://www.wikidata.org/wiki/Q176623","display_name":"Random variable","level":2,"score":0.13055816},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C182310444","wikidata":"https://www.wikidata.org/wiki/Q1332643","display_name":"Boundary value problem","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/978-3-030-47358-7_51","pdf_url":null,"source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":24,"referenced_works":["https://openalex.org/W1515272691","https://openalex.org/W1663973292","https://openalex.org/W1880262756","https://openalex.org/W190008395","https://openalex.org/W1934021597","https://openalex.org/W195465510","https://openalex.org/W2001082470","https://openalex.org/W2009086942","https://openalex.org/W2026065824","https://openalex.org/W2055325763","https://openalex.org/W2055337076","https://openalex.org/W2090050657","https://openalex.org/W2099090453","https://openalex.org/W2104924585","https://openalex.org/W2128925311","https://openalex.org/W2134731454","https://openalex.org/W2143869282","https://openalex.org/W2166851633","https://openalex.org/W2174706414","https://openalex.org/W2225156818","https://openalex.org/W2334889010","https://openalex.org/W2737946880","https://openalex.org/W2907966865","https://openalex.org/W4231510805"],"related_works":["https://openalex.org/W4315588616","https://openalex.org/W4312773271","https://openalex.org/W3204672119","https://openalex.org/W3005513013","https://openalex.org/W2962686197","https://openalex.org/W2891616219","https://openalex.org/W2888805565","https://openalex.org/W2796920963","https://openalex.org/W2769501189","https://openalex.org/W2207653751"],"abstract_inverted_index":{"Probabilistic":[0],"topic":[1,43,78,90],"models":[2,33],"are":[3,19],"broadly":[4],"used":[5,21],"to":[6,46,88,101,115,133],"infer":[7],"meaningful":[8],"patterns":[9],"of":[10,15,49,98,122],"words":[11],"over":[12],"a":[13,27,68,76,107],"mixture":[14],"latent":[16],"topics":[17,141],"that":[18,109],"commonly":[20],"for":[22,29],"statistical":[23],"analyses":[24],"or":[25],"as":[26,35,61],"proxy":[28],"supervised":[30],"tasks.":[31],"However,":[32],"such":[34,60],"Latent":[36],"Dirichlet":[37,51,83],"Allocation":[38],"(LDA)":[39],"assume":[40],"independence":[41],"between":[42],"proportions":[44],"due":[45],"the":[47,50,62,81,103,120,126,131,134,139,155],"nature":[48],"distribution;":[52],"this":[53,72],"effect":[54],"is":[55],"captured":[56],"with":[57,125],"other":[58],"distributions":[59],"logistic":[63],"normal":[64],"distribution,":[65],"resulting":[66,105],"in":[67,86,106,149],"complex":[69],"model.":[70],"In":[71],"paper,":[73],"we":[74],"develop":[75],"probabilistic":[77],"model":[79,108],"using":[80],"generalized":[82],"distribution":[84],"(LGDA)":[85],"order":[87],"capture":[89],"correlation":[91],"while":[92],"maintaining":[93],"conjugacy.":[94],"We":[95,118,137],"make":[96],"use":[97],"Expectation":[99],"Propagation":[100],"approximate":[102],"posterior,":[104],"achieves":[110],"more":[111],"accurate":[112],"inferences":[113],"compared":[114,124],"variational":[116],"inference.":[117],"evaluate":[119,145],"convergence":[121],"EP":[123],"classical":[127],"LDA":[128],"by":[129,142],"comparing":[130],"approximation":[132],"marginal":[135],"distribution.":[136],"show":[138],"obtained":[140],"LGDA":[143],"and":[144],"its":[146],"predictive":[147],"performance":[148],"two":[150],"text":[151],"classification":[152],"tasks,":[153],"outperforming":[154],"vanilla":[156],"LDA.":[157]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3022739968","counts_by_year":[],"updated_date":"2024-10-14T13:48:02.591201","created_date":"2020-05-13"}