{"id":"https://openalex.org/W3015971763","doi":"https://doi.org/10.1007/978-3-030-45442-5_25","title":"Domain Adaptation via Context Prediction for Engineering Diagram Search","display_name":"Domain Adaptation via Context Prediction for Engineering Diagram Search","publication_year":2020,"publication_date":"2020-01-01","ids":{"openalex":"https://openalex.org/W3015971763","doi":"https://doi.org/10.1007/978-3-030-45442-5_25","mag":"3015971763"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/978-3-030-45442-5_25","pdf_url":"https://link.springer.com/content/pdf/10.1007%2F978-3-030-45442-5_25.pdf","source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"book-chapter","type_crossref":"book-chapter","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://link.springer.com/content/pdf/10.1007%2F978-3-030-45442-5_25.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5015256182","display_name":"Harsh Jhamtani","orcid":null},"institutions":[{"id":"https://openalex.org/I74973139","display_name":"Carnegie Mellon University","ror":"https://ror.org/05x2bcf33","country_code":"US","type":"education","lineage":["https://openalex.org/I74973139"]}],"countries":["US"],"is_corresponding":true,"raw_author_name":"Harsh Jhamtani","raw_affiliation_strings":["Carnegie Mellon University, Pittsburgh, USA"],"affiliations":[{"raw_affiliation_string":"Carnegie Mellon University, Pittsburgh, USA","institution_ids":["https://openalex.org/I74973139"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5017455302","display_name":"Taylor Berg-Kirkpatrick","orcid":"https://orcid.org/0000-0002-1283-4075"},"institutions":[{"id":"https://openalex.org/I2800935791","display_name":"UC San Diego Health System","ror":"https://ror.org/01kbfgm16","country_code":"US","type":"healthcare","lineage":["https://openalex.org/I2800935791"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Taylor Berg-Kirkpatrick","raw_affiliation_strings":["UC San Diego, San Diego, USA"],"affiliations":[{"raw_affiliation_string":"UC San Diego, San Diego, USA","institution_ids":["https://openalex.org/I2800935791"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":["https://openalex.org/A5015256182"],"corresponding_institution_ids":["https://openalex.org/I74973139"],"apc_list":{"value":5000,"currency":"EUR","value_usd":5392,"provenance":"doaj"},"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":61},"biblio":{"volume":null,"issue":null,"first_page":"199","last_page":"206"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11714","display_name":"Visual Question Answering in Images and Videos","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11714","display_name":"Visual Question Answering in Images and Videos","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Image Feature Retrieval and Recognition Techniques","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10824","display_name":"Shape Matching and Object Recognition","score":0.9921,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature-matching","display_name":"Feature Matching","score":0.554747},{"id":"https://openalex.org/keywords/representation","display_name":"Representation (politics)","score":0.5485594},{"id":"https://openalex.org/keywords/shape-matching","display_name":"Shape Matching","score":0.522731},{"id":"https://openalex.org/keywords/feature-descriptors","display_name":"Feature Descriptors","score":0.515713},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.5155861},{"id":"https://openalex.org/keywords/image-retrieval","display_name":"Image Retrieval","score":0.513876},{"id":"https://openalex.org/keywords/image-captioning","display_name":"Image Captioning","score":0.503569},{"id":"https://openalex.org/keywords/feature-engineering","display_name":"Feature engineering","score":0.46404096}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8565694},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.6147351},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.58509326},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.55348617},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.5485594},{"id":"https://openalex.org/C186399060","wikidata":"https://www.wikidata.org/wiki/Q959962","display_name":"Diagram","level":2,"score":0.5382739},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.5155861},{"id":"https://openalex.org/C2778827112","wikidata":"https://www.wikidata.org/wiki/Q22245680","display_name":"Feature engineering","level":3,"score":0.46404096},{"id":"https://openalex.org/C81669768","wikidata":"https://www.wikidata.org/wiki/Q2359161","display_name":"Precision and recall","level":2,"score":0.4624261},{"id":"https://openalex.org/C8038995","wikidata":"https://www.wikidata.org/wiki/Q1152135","display_name":"Unsupervised learning","level":2,"score":0.45594016},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.45404023},{"id":"https://openalex.org/C139807058","wikidata":"https://www.wikidata.org/wiki/Q352374","display_name":"Adaptation (eye)","level":2,"score":0.4503228},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.42555627},{"id":"https://openalex.org/C118505674","wikidata":"https://www.wikidata.org/wiki/Q42586063","display_name":"Encoder","level":2,"score":0.4172905},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.39151478},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3576396},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.20467779},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.0},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/978-3-030-45442-5_25","pdf_url":"https://link.springer.com/content/pdf/10.1007%2F978-3-030-45442-5_25.pdf","source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/978-3-030-45442-5_25","pdf_url":"https://link.springer.com/content/pdf/10.1007%2F978-3-030-45442-5_25.pdf","source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.48,"id":"https://metadata.un.org/sdg/1","display_name":"No poverty"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":20,"referenced_works":["https://openalex.org/W1686810756","https://openalex.org/W1898560071","https://openalex.org/W2041658416","https://openalex.org/W2108598243","https://openalex.org/W2111993661","https://openalex.org/W2124386111","https://openalex.org/W2131846894","https://openalex.org/W2153404544","https://openalex.org/W2153579005","https://openalex.org/W2321533354","https://openalex.org/W2346062110","https://openalex.org/W2396976214","https://openalex.org/W2656999302","https://openalex.org/W2765872781","https://openalex.org/W2786808285","https://openalex.org/W2787560479","https://openalex.org/W2914091119","https://openalex.org/W2963129433","https://openalex.org/W2963341956","https://openalex.org/W343636949"],"related_works":["https://openalex.org/W4390516098","https://openalex.org/W4243199227","https://openalex.org/W4205302943","https://openalex.org/W3155418658","https://openalex.org/W2561132942","https://openalex.org/W2384362569","https://openalex.org/W2379948177","https://openalex.org/W2181948922","https://openalex.org/W2142795561","https://openalex.org/W2107949441"],"abstract_inverted_index":{"Effective":[0],"search":[1,123],"for":[2,65,129],"engineering":[3],"diagram":[4,53],"images":[5,54],"in":[6,133],"larger":[7],"collections":[8],"is":[9],"challenging":[10],"because":[11,48],"most":[12],"existing":[13],"feature":[14,70],"extraction":[15],"models":[16],"are":[17],"pre-trained":[18,85],"on":[19,104,120],"natural":[20],"image":[21,86,101],"data":[22],"rather":[23],"than":[24,126],"diagrams.":[25],"Surprisingly,":[26],"we":[27,82],"observe":[28],"through":[29],"experiments":[30],"that":[31,72,112],"even":[32],"in-domain":[33],"training":[34],"with":[35],"standard":[36],"unsupervised":[37,66],"representation":[38],"learning":[39,58],"techniques":[40],"leads":[41,116],"to":[42,76,91,117],"poor":[43],"results.":[44],"We":[45,60],"argue":[46],"that,":[47],"of":[49,68,99],"their":[50],"structured":[51],"nature,":[52],"require":[55],"more":[56,125],"specially-tailored":[57],"objectives.":[59],"propose":[61],"a":[62,84,121],"new":[63],"method":[64,115],"adaptation":[67],"out-of-domain":[69],"extractors":[71],"asks":[73],"the":[74,94,105,134],"model":[75],"reason":[77],"about":[78],"spatial":[79],"context.":[80],"Specifically,":[81],"fine-tune":[83],"encoder":[87],"by":[88],"requiring":[89],"it":[90],"correctly":[92],"predict":[93],"relative":[95],"orientation":[96],"between":[97],"pairs":[98],"nearby":[100],"regions.":[102],"Experiments":[103],"recently":[106],"released":[107],"Ikea":[108],"Diagram":[109],"Dataset":[110],"show":[111],"our":[113],"proposed":[114],"substantial":[118],"improvements":[119],"downstream":[122],"task,":[124],"doubling":[127],"recall":[128],"certain":[130],"query":[131],"categories":[132],"dataset.":[135]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3015971763","counts_by_year":[],"updated_date":"2024-09-29T23:56:57.043752","created_date":"2020-04-17"}