{"id":"https://openalex.org/W2990651262","doi":"https://doi.org/10.1007/978-3-030-34120-6_1","title":"Superpixel-Based Saliency Guided Intersecting Cortical Model for Unsupervised Object Segmentation","display_name":"Superpixel-Based Saliency Guided Intersecting Cortical Model for Unsupervised Object Segmentation","publication_year":2019,"publication_date":"2019-01-01","ids":{"openalex":"https://openalex.org/W2990651262","doi":"https://doi.org/10.1007/978-3-030-34120-6_1","mag":"2990651262"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/978-3-030-34120-6_1","pdf_url":null,"source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"book-chapter","type_crossref":"book-chapter","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100337582","display_name":"Chen Wang","orcid":"https://orcid.org/0000-0002-4630-0805"},"institutions":[{"id":"https://openalex.org/I4210104252","display_name":"Air Force Engineering University","ror":"https://ror.org/00seraz22","country_code":"CN","type":"education","lineage":["https://openalex.org/I4210104252"]}],"countries":["CN"],"is_corresponding":true,"raw_author_name":"Chen Wang","raw_affiliation_strings":["Air Force Engineering University (AFEU), Xi\u2019an, China"],"affiliations":[{"raw_affiliation_string":"Air Force Engineering University (AFEU), Xi\u2019an, China","institution_ids":["https://openalex.org/I4210104252"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5090266298","display_name":"Linyuan He","orcid":"https://orcid.org/0000-0001-9377-3843"},"institutions":[{"id":"https://openalex.org/I4210104252","display_name":"Air Force Engineering University","ror":"https://ror.org/00seraz22","country_code":"CN","type":"education","lineage":["https://openalex.org/I4210104252"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Linyuan He","raw_affiliation_strings":["Air Force Engineering University (AFEU), Xi\u2019an, China"],"affiliations":[{"raw_affiliation_string":"Air Force Engineering University (AFEU), Xi\u2019an, China","institution_ids":["https://openalex.org/I4210104252"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102840909","display_name":"Shiping Ma","orcid":null},"institutions":[{"id":"https://openalex.org/I4210104252","display_name":"Air Force Engineering University","ror":"https://ror.org/00seraz22","country_code":"CN","type":"education","lineage":["https://openalex.org/I4210104252"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shiping Ma","raw_affiliation_strings":["Air Force Engineering University (AFEU), Xi\u2019an, China"],"affiliations":[{"raw_affiliation_string":"Air Force Engineering University (AFEU), Xi\u2019an, China","institution_ids":["https://openalex.org/I4210104252"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100666832","display_name":"Shan Gao","orcid":"https://orcid.org/0000-0001-5455-2175"},"institutions":[{"id":"https://openalex.org/I4210104252","display_name":"Air Force Engineering University","ror":"https://ror.org/00seraz22","country_code":"CN","type":"education","lineage":["https://openalex.org/I4210104252"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shan Gao","raw_affiliation_strings":["Air Force Engineering University (AFEU), Xi\u2019an, China"],"affiliations":[{"raw_affiliation_string":"Air Force Engineering University (AFEU), Xi\u2019an, China","institution_ids":["https://openalex.org/I4210104252"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5100337582"],"corresponding_institution_ids":["https://openalex.org/I4210104252"],"apc_list":{"value":5000,"currency":"EUR","value_usd":5392,"provenance":"doaj"},"apc_paid":null,"fwci":0.271,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.394761,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":62,"max":70},"biblio":{"volume":null,"issue":null,"first_page":"3","last_page":"17"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11605","display_name":"Computational Modeling of Visual Saliency Detection","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11605","display_name":"Computational Modeling of Visual Saliency Detection","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12389","display_name":"Infrared Small Target Detection and Tracking","score":0.9967,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Image Feature Retrieval and Recognition Techniques","score":0.9929,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/saliency-detection","display_name":"Saliency Detection","score":0.638979},{"id":"https://openalex.org/keywords/salient-object-detection","display_name":"Salient Object Detection","score":0.633487},{"id":"https://openalex.org/keywords/video-object-segmentation","display_name":"Video Object Segmentation","score":0.593956},{"id":"https://openalex.org/keywords/image-segmentation","display_name":"Image Segmentation","score":0.587577},{"id":"https://openalex.org/keywords/interest-point-detectors","display_name":"Interest Point Detectors","score":0.582505},{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness (evolution)","score":0.55467916},{"id":"https://openalex.org/keywords/ground-truth","display_name":"Ground truth","score":0.45571494},{"id":"https://openalex.org/keywords/segmentation-based-object-categorization","display_name":"Segmentation-based object categorization","score":0.43404895}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.84117687},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.83065826},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.6499224},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.6352032},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.6035024},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.5677456},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.55467916},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.5103156},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.49408272},{"id":"https://openalex.org/C146849305","wikidata":"https://www.wikidata.org/wiki/Q370766","display_name":"Ground truth","level":2,"score":0.45571494},{"id":"https://openalex.org/C25694479","wikidata":"https://www.wikidata.org/wiki/Q7446278","display_name":"Segmentation-based object categorization","level":5,"score":0.43404895},{"id":"https://openalex.org/C2781238097","wikidata":"https://www.wikidata.org/wiki/Q175026","display_name":"Object (grammar)","level":2,"score":0.41274512},{"id":"https://openalex.org/C65885262","wikidata":"https://www.wikidata.org/wiki/Q7429708","display_name":"Scale-space segmentation","level":4,"score":0.32925713},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/978-3-030-34120-6_1","pdf_url":null,"source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/16","display_name":"Peace, justice, and strong institutions","score":0.45}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":26,"referenced_works":["https://openalex.org/W1642548955","https://openalex.org/W1965301399","https://openalex.org/W1966185718","https://openalex.org/W1972946206","https://openalex.org/W2000304139","https://openalex.org/W2013951976","https://openalex.org/W2032843526","https://openalex.org/W2037954058","https://openalex.org/W2039313011","https://openalex.org/W2052693078","https://openalex.org/W2100470808","https://openalex.org/W2124592697","https://openalex.org/W2135957164","https://openalex.org/W2140654078","https://openalex.org/W2146103513","https://openalex.org/W2337071454","https://openalex.org/W2338972621","https://openalex.org/W2370799441","https://openalex.org/W2560619664","https://openalex.org/W2596954664","https://openalex.org/W2606485483","https://openalex.org/W2680673981","https://openalex.org/W2734707953","https://openalex.org/W2789609908","https://openalex.org/W2883158673","https://openalex.org/W2946839510"],"related_works":["https://openalex.org/W4205800335","https://openalex.org/W3144569342","https://openalex.org/W2945274617","https://openalex.org/W2551987074","https://openalex.org/W2386644571","https://openalex.org/W2371519352","https://openalex.org/W2185902295","https://openalex.org/W2103507220","https://openalex.org/W2055202857","https://openalex.org/W1999008862"],"abstract_inverted_index":{"Unsupervised":[0],"object":[1,11,21,57,70,167,225],"segmentation":[2],"aims":[3],"to":[4,8,20,35,52,92,100,104,112,122,156,163,217],"assign":[5],"same":[6,44,129],"label":[7],"pixels":[9],"of":[10,86,125,147,184,195,202,222,224],"region":[12,145],"with":[13,204],"feature":[14,134],"homogeneity,":[15],"which":[16,179],"can":[17,29,48,180],"be":[18],"applied":[19],"detection":[22,47,115,141,244],"and":[23,41,89,176],"recognition.":[24],"Intersecting":[25],"cortical":[26,77],"model":[27,78,249],"(ICM)":[28],"simulate":[30,50],"human":[31],"visual":[32],"system":[33],"(HVS)":[34],"process":[36],"image":[37,198],"for":[38,68,166,240],"many":[39],"applications,":[40],"at":[42,169],"the":[43,54,138,150,158,170,182,189,212,218,243],"time,":[45],"saliency":[46,63,74,102,114,133,140],"also":[49],"HVS":[51],"locate":[53],"most":[55],"important":[56],"in":[58,82,128,161,220,253],"a":[59,65],"scene.":[60,130],"Based":[61],"on":[62,144,192],"detection,":[64],"novel":[66],"approach":[67],"unsupervised":[69],"segmentation,":[71,168,226],"termed":[72],"as":[73],"guided":[75,120,152],"intersecting":[76],"(SG-ICM),":[79],"is":[80,98,142,154,215,238],"proposed":[81,132,139,190,213],"this":[83,108,185,236,248],"paper.":[84],"Instead":[85],"using":[87],"gray-scale":[88],"spatial":[90],"information":[91],"motivate":[93],"ICM":[94],"neurons":[95],"traditionally,":[96],"it":[97,228],"better":[99],"exploit":[101],"characteristic":[103],"guide":[105],"ICM.":[106],"In":[107,234],"paper,":[109],"we":[110,173],"plan":[111],"do":[113],"exploiting":[116],"an":[117],"improved":[118],"dynamic":[119,151],"filtering":[121],"analyze":[123],"significance":[124],"different":[126],"regions":[127],"The":[131],"lies":[135],"on:":[136],"(1)":[137],"based":[143],"instead":[146],"pixel;":[148],"(2)":[149],"filter":[153],"designed":[155],"accelerate":[157],"filtering;":[159],"(3)":[160],"order":[162],"improve":[164],"SG-ICM":[165],"each":[171],"iteration,":[172],"use":[174],"adaptive":[175],"simple":[177],"threshold,":[178],"raise":[181],"speed":[183],"model.":[186],"We":[187],"check":[188],"algorithm":[191],"common":[193],"database":[194,201],"DOTI,":[196],"color":[197],"from":[199],"public":[200],"MSRA":[203],"ground":[205],"truth":[206],"annotation.":[207],"Experimental":[208],"results":[209,245],"show":[210],"that":[211,247],"method":[214,237],"superior":[216],"others":[219],"terms":[221],"robustness":[223],"furthermore,":[227],"does":[229],"not":[230],"need":[231],"any":[232],"training.":[233],"addition,":[235],"effective":[239],"aerial":[241,254],"image,":[242],"reveal":[246],"has":[250],"great":[251],"potential":[252],"reconnaissance":[255],"application.":[256]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2990651262","counts_by_year":[{"year":2021,"cited_by_count":1}],"updated_date":"2024-10-11T00:37:06.242512","created_date":"2019-12-05"}