{"id":"https://openalex.org/W2799107345","doi":"https://doi.org/10.1007/978-3-030-01261-8_12","title":"Domain Adaptation Through Synthesis for Unsupervised Person Re-identification","display_name":"Domain Adaptation Through Synthesis for Unsupervised Person Re-identification","publication_year":2018,"publication_date":"2018-01-01","ids":{"openalex":"https://openalex.org/W2799107345","doi":"https://doi.org/10.1007/978-3-030-01261-8_12","mag":"2799107345"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/978-3-030-01261-8_12","pdf_url":null,"source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"book-chapter","type_crossref":"book-chapter","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/1804.10094","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5097072729","display_name":"S\u0142awomir B\u0105k","orcid":"https://orcid.org/0000-0002-7152-5002"},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"S\u0142awomir B\u0105k","raw_affiliation_strings":["Argo AI, Pittsburgh, PA, 15222, USA"],"affiliations":[{"raw_affiliation_string":"Argo AI, Pittsburgh, PA, 15222, USA","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5111702500","display_name":"Peter Carr","orcid":null},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Peter Carr","raw_affiliation_strings":["Argo AI, Pittsburgh, PA, 15222, USA"],"affiliations":[{"raw_affiliation_string":"Argo AI, Pittsburgh, PA, 15222, USA","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5034761030","display_name":"Jean\u2010Fran\u00e7ois Lalonde","orcid":"https://orcid.org/0000-0002-6583-2364"},"institutions":[{"id":"https://openalex.org/I43406934","display_name":"Universit\u00e9 Laval","ror":"https://ror.org/04sjchr03","country_code":"CA","type":"education","lineage":["https://openalex.org/I43406934"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Jean-Fran\u00e7ois Lalonde","raw_affiliation_strings":["Universit\u00e9 Laval, Quebec City, G1V 0A6, Canada"],"affiliations":[{"raw_affiliation_string":"Universit\u00e9 Laval, Quebec City, G1V 0A6, Canada","institution_ids":["https://openalex.org/I43406934"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":5000,"currency":"EUR","value_usd":5392,"provenance":"doaj"},"apc_paid":null,"fwci":13.319,"has_fulltext":false,"cited_by_count":216,"citation_normalized_percentile":{"value":0.999732,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":99,"max":100},"biblio":{"volume":null,"issue":null,"first_page":"193","last_page":"209"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10331","display_name":"Visual Object Tracking and Person Re-identification","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10331","display_name":"Visual Object Tracking and Person Re-identification","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10812","display_name":"Human Action Recognition and Pose Estimation","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11019","display_name":"Image Enhancement Techniques","score":0.9959,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/identification","display_name":"Identification (biology)","score":0.733666},{"id":"https://openalex.org/keywords/domain-adaptation","display_name":"Domain adaptation","score":0.69224024},{"id":"https://openalex.org/keywords/person-re-identification","display_name":"Person Re-identification","score":0.588811},{"id":"https://openalex.org/keywords/low-light-enhancement","display_name":"Low-Light Enhancement","score":0.540898},{"id":"https://openalex.org/keywords/background-subtraction","display_name":"Background Subtraction","score":0.539568},{"id":"https://openalex.org/keywords/contrast-enhancement","display_name":"Contrast Enhancement","score":0.539356},{"id":"https://openalex.org/keywords/single-image-restoration","display_name":"Single Image Restoration","score":0.533086},{"id":"https://openalex.org/keywords/training-set","display_name":"Training set","score":0.42950463}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8788183},{"id":"https://openalex.org/C116834253","wikidata":"https://www.wikidata.org/wiki/Q2039217","display_name":"Identification (biology)","level":2,"score":0.733666},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7138843},{"id":"https://openalex.org/C2776434776","wikidata":"https://www.wikidata.org/wiki/Q19246213","display_name":"Domain adaptation","level":3,"score":0.69224024},{"id":"https://openalex.org/C139807058","wikidata":"https://www.wikidata.org/wiki/Q352374","display_name":"Adaptation (eye)","level":2,"score":0.6734371},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.6066639},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.43805802},{"id":"https://openalex.org/C51632099","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Training set","level":2,"score":0.42950463},{"id":"https://openalex.org/C2778755073","wikidata":"https://www.wikidata.org/wiki/Q10858537","display_name":"Scale (ratio)","level":2,"score":0.4233414},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4065023},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.38631773},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.055012584},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C59822182","wikidata":"https://www.wikidata.org/wiki/Q441","display_name":"Botany","level":1,"score":0.0},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/978-3-030-01261-8_12","pdf_url":null,"source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/1804.10094","pdf_url":"http://arxiv.org/pdf/1804.10094","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/1804.10094","pdf_url":"http://arxiv.org/pdf/1804.10094","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Sustainable cities and communities","id":"https://metadata.un.org/sdg/11","score":0.58}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":52,"referenced_works":["https://openalex.org/W1596233070","https://openalex.org/W1602182271","https://openalex.org/W1916279783","https://openalex.org/W1920259731","https://openalex.org/W1945811542","https://openalex.org/W1949591461","https://openalex.org/W1962025484","https://openalex.org/W1982925187","https://openalex.org/W1991452654","https://openalex.org/W1999478721","https://openalex.org/W2003537776","https://openalex.org/W2017214807","https://openalex.org/W2031342017","https://openalex.org/W2036196300","https://openalex.org/W2037306059","https://openalex.org/W2099471712","https://openalex.org/W2104068492","https://openalex.org/W2139763424","https://openalex.org/W2151873133","https://openalex.org/W2160547390","https://openalex.org/W2194775991","https://openalex.org/W2204750386","https://openalex.org/W2214409633","https://openalex.org/W2258844511","https://openalex.org/W2300840837","https://openalex.org/W2327827989","https://openalex.org/W2342611082","https://openalex.org/W2431874326","https://openalex.org/W2433217581","https://openalex.org/W2441160157","https://openalex.org/W2467139031","https://openalex.org/W2511791013","https://openalex.org/W2520433280","https://openalex.org/W2520831962","https://openalex.org/W2598634450","https://openalex.org/W2606377603","https://openalex.org/W2608461606","https://openalex.org/W2736410039","https://openalex.org/W2740096464","https://openalex.org/W2740687571","https://openalex.org/W2780351918","https://openalex.org/W2962793481","https://openalex.org/W2963000559","https://openalex.org/W2963557071","https://openalex.org/W2963709863","https://openalex.org/W2963721283","https://openalex.org/W2963736028","https://openalex.org/W2963826681","https://openalex.org/W2964163358","https://openalex.org/W3102668440","https://openalex.org/W41482161","https://openalex.org/W4229523108"],"related_works":["https://openalex.org/W4389474468","https://openalex.org/W4321649381","https://openalex.org/W4300172004","https://openalex.org/W4295929828","https://openalex.org/W4287890001","https://openalex.org/W3203792196","https://openalex.org/W3180787869","https://openalex.org/W3156096827","https://openalex.org/W2997645659","https://openalex.org/W2955455867"],"abstract_inverted_index":{"Drastic":[0],"variations":[1],"in":[2,29,88,109],"illumination":[3,46,62,90],"across":[4],"surveillance":[5],"cameras":[6],"make":[7],"the":[8],"person":[9],"re-identification":[10,17],"problem":[11],"extremely":[12],"challenging.":[13],"Current":[14],"large":[15],"scale":[16],"datasets":[18],"have":[19],"a":[20,33,35,54,94,110],"significant":[21],"number":[22],"of":[23,61,102],"training":[24],"subjects,":[25],"but":[26],"lack":[27],"diversity":[28],"lighting":[30],"conditions.":[31,63],"As":[32],"result,":[34],"trained":[36],"model":[37,78],"requires":[38],"fine-tuning":[39,108],"to":[40],"become":[41],"effective":[42],"under":[43],"an":[44],"unseen":[45,89],"condition.":[47],"To":[48,84],"alleviate":[49],"this":[50],"problem,":[51],"we":[52,65,92],"introduce":[53],"new":[55],"synthetic":[56,104],"dataset":[57],"that":[58,99],"contains":[59],"hundreds":[60],"Specifically,":[64],"use":[66],"100":[67],"virtual":[68],"humans":[69],"illuminated":[70],"with":[71,130],"multiple":[72],"HDR":[73],"environment":[74],"maps":[75],"which":[76],"accurately":[77],"realistic":[79],"indoor":[80],"and":[81,106,122,126],"outdoor":[82],"lighting.":[83],"achieve":[85],"better":[86],"accuracy":[87,119],"conditions":[91],"propose":[93],"novel":[95],"domain":[96],"adaptation":[97],"technique":[98],"takes":[100],"advantage":[101],"our":[103],"data":[105],"performs":[107],"completely":[111],"unsupervised":[112,123],"way.":[113],"Our":[114],"approach":[115],"yields":[116],"significantly":[117],"higher":[118],"than":[120],"semi-supervised":[121],"state-of-the-art":[124],"methods,":[125],"is":[127],"very":[128],"competitive":[129],"supervised":[131],"techniques.":[132]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2799107345","counts_by_year":[{"year":2024,"cited_by_count":11},{"year":2023,"cited_by_count":11},{"year":2022,"cited_by_count":24},{"year":2021,"cited_by_count":65},{"year":2020,"cited_by_count":61},{"year":2019,"cited_by_count":40},{"year":2018,"cited_by_count":1}],"updated_date":"2024-10-19T05:44:50.467796","created_date":"2018-05-07"}