{"id":"https://openalex.org/W1776010564","doi":"https://doi.org/10.1007/3-540-45497-7_24","title":"Hierarchical Clustering of Female Urinary Incontinence Data Having Noise and Outliers","display_name":"Hierarchical Clustering of Female Urinary Incontinence Data Having Noise and Outliers","publication_year":2001,"publication_date":"2001-01-01","ids":{"openalex":"https://openalex.org/W1776010564","doi":"https://doi.org/10.1007/3-540-45497-7_24","mag":"1776010564"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/3-540-45497-7_24","pdf_url":null,"source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"book-chapter","type_crossref":"book-chapter","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5084187883","display_name":"Jorma Laurikkala","orcid":null},"institutions":[{"id":"https://openalex.org/I166825849","display_name":"Tampere University","ror":"https://ror.org/033003e23","country_code":"FI","type":"education","lineage":["https://openalex.org/I166825849"]}],"countries":["FI"],"is_corresponding":false,"raw_author_name":"Jorma Laurikkala","raw_affiliation_strings":["University of Tampere#TAB#"],"affiliations":[{"raw_affiliation_string":"University of Tampere#TAB#","institution_ids":["https://openalex.org/I166825849","https://openalex.org/I166825849"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5023021257","display_name":"Martti Juhola","orcid":"https://orcid.org/0000-0003-2298-9553"},"institutions":[{"id":"https://openalex.org/I166825849","display_name":"Tampere University","ror":"https://ror.org/033003e23","country_code":"FI","type":"education","lineage":["https://openalex.org/I166825849"]}],"countries":["FI"],"is_corresponding":false,"raw_author_name":"Martti Juhola","raw_affiliation_strings":["University of Tampere#TAB#"],"affiliations":[{"raw_affiliation_string":"University of Tampere#TAB#","institution_ids":["https://openalex.org/I166825849","https://openalex.org/I166825849"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":5000,"currency":"EUR","value_usd":5392,"provenance":"doaj"},"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.544286,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":59,"max":66},"biblio":{"volume":null,"issue":null,"first_page":"161","last_page":"167"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11871","display_name":"Detection and Handling of Multicollinearity in Regression Analysis","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11871","display_name":"Detection and Handling of Multicollinearity in Regression Analysis","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12535","display_name":"Learning with Noisy Labels in Machine Learning","score":0.9688,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10640","display_name":"Chemometrics in Analytical Chemistry and Food Technology","score":0.9649,"subfield":{"id":"https://openalex.org/subfields/1602","display_name":"Analytical Chemistry"},"field":{"id":"https://openalex.org/fields/16","display_name":"Chemistry"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/mahalanobis-distance","display_name":"Mahalanobis distance","score":0.7926285},{"id":"https://openalex.org/keywords/hierarchical-clustering","display_name":"Hierarchical clustering","score":0.6783756},{"id":"https://openalex.org/keywords/centroid","display_name":"Centroid","score":0.6285143},{"id":"https://openalex.org/keywords/outlier-detection","display_name":"Outlier Detection","score":0.58734},{"id":"https://openalex.org/keywords/linkage","display_name":"Linkage (software)","score":0.55386937},{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.54771566},{"id":"https://openalex.org/keywords/data-set","display_name":"Data set","score":0.46286875}],"concepts":[{"id":"https://openalex.org/C1921717","wikidata":"https://www.wikidata.org/wiki/Q1334846","display_name":"Mahalanobis distance","level":2,"score":0.7926285},{"id":"https://openalex.org/C79337645","wikidata":"https://www.wikidata.org/wiki/Q779824","display_name":"Outlier","level":2,"score":0.7458038},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.6879464},{"id":"https://openalex.org/C92835128","wikidata":"https://www.wikidata.org/wiki/Q1277447","display_name":"Hierarchical clustering","level":3,"score":0.6783756},{"id":"https://openalex.org/C146599234","wikidata":"https://www.wikidata.org/wiki/Q511093","display_name":"Centroid","level":2,"score":0.6285143},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.62843704},{"id":"https://openalex.org/C31266012","wikidata":"https://www.wikidata.org/wiki/Q6554340","display_name":"Linkage (software)","level":3,"score":0.55386937},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.54771566},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.5305042},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.4979782},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.49082074},{"id":"https://openalex.org/C58489278","wikidata":"https://www.wikidata.org/wiki/Q1172284","display_name":"Data set","level":2,"score":0.46286875},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4230036},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.10289937},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.08302575},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/3-540-45497-7_24","pdf_url":null,"source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Gender equality","score":0.7,"id":"https://metadata.un.org/sdg/5"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":19,"referenced_works":["https://openalex.org/W1971784203","https://openalex.org/W1997410866","https://openalex.org/W2030644393","https://openalex.org/W2045467277","https://openalex.org/W2107686700","https://openalex.org/W2122496402","https://openalex.org/W2149706766","https://openalex.org/W2163952039","https://openalex.org/W2319660501","https://openalex.org/W2405117167","https://openalex.org/W2555756618","https://openalex.org/W2612166593","https://openalex.org/W3009577598","https://openalex.org/W3022335129","https://openalex.org/W350780317","https://openalex.org/W4251348903","https://openalex.org/W4299732443","https://openalex.org/W80011902","https://openalex.org/W93378247"],"related_works":["https://openalex.org/W939486154","https://openalex.org/W4386482528","https://openalex.org/W4382795578","https://openalex.org/W3182289794","https://openalex.org/W2992250188","https://openalex.org/W2402648945","https://openalex.org/W2355463328","https://openalex.org/W2133920285","https://openalex.org/W2053213469","https://openalex.org/W1431147547"],"abstract_inverted_index":{"We":[0],"studied":[1],"pre-processing":[2],"of":[3,132,148],"a":[4],"female":[5],"urinary":[6],"incontinence":[7],"data":[8,53,134],"set":[9],"by":[10],"removing":[11],"uninformative":[12],"variables,":[13],"outliers,":[14,139],"and":[15,36,67,77,92,104,141],"noise,":[16,140],"to":[17,22,84,110,150],"allow":[18],"hierarchical":[19],"clustering":[20,58],"methods":[21,82,106,127],"find":[23],"partitions":[24],"that":[25,125],"resemble":[26],"the":[27,45,86],"diagnostic":[28,89],"classes.":[29,114],"Outliers":[30],"were":[31,42,54,71,107,144],"identified":[32],"with":[33,44,56,65,73,120],"box":[34],"plots":[35],"Mahalanobis":[37],"distances,":[38],"while":[39],"noisy":[40],"cases":[41],"detected":[43],"repeated":[46],"edited":[47],"nearest":[48],"neighbor":[49],"rule.":[50],"The":[51,60,115],"cleaned":[52],"analyzed":[55],"six":[57],"methods.":[59],"best":[61],"results,":[62],"as":[63],"measured":[64],"Fowlkes":[66],"Mallows":[68],"similarity":[69],"measure,":[70],"achieved":[72],"complete":[74],"linkage":[75],"(0.90)":[76],"Ward's":[78],"method":[79],"(0.84).":[80],"These":[81],"managed":[83],"separate":[85],"two":[87],"largest":[88],"classes,":[90],"stress":[91],"mixed":[93],"incontinence,":[94],"from":[95],"each":[96],"other.":[97],"Unfortunately,":[98],"single":[99],"linkage,":[100,102],"average":[101],"centroid,":[103],"median":[105],"not":[108],"able":[109],"differentiate":[111],"between":[112],"these":[113],"results":[116,123],"are":[117],"in":[118],"accord":[119],"our":[121],"earlier":[122],"indicating":[124],"supervised":[126],"suit":[128],"better":[129],"for":[130],"classification":[131],"this":[133],"than":[135],"cluster":[136],"analysis.":[137],"However,":[138],"clusters,":[142],"which":[143],"identified,":[145],"may":[146],"be":[147],"interest":[149],"expert":[151],"physicians.":[152]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1776010564","counts_by_year":[],"updated_date":"2024-11-24T10:10:01.975823","created_date":"2016-06-24"}