iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1007/11893257_103
{"id":"https://openalex.org/W2133473130","doi":"https://doi.org/10.1007/11893257_103","title":"A Hybrid Model for Symbolic Interval Time Series Forecasting","display_name":"A Hybrid Model for Symbolic Interval Time Series Forecasting","publication_year":2006,"publication_date":"2006-01-01","ids":{"openalex":"https://openalex.org/W2133473130","doi":"https://doi.org/10.1007/11893257_103","mag":"2133473130"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/11893257_103","pdf_url":null,"source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"book-chapter","type_crossref":"book-chapter","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5073373422","display_name":"Andr\u00e9 Luis Santiago Maia","orcid":null},"institutions":[],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Andr\u00e9 Luis S. Maia","raw_affiliation_strings":["Centro de Informatica \u2013 CIn/UFPE, Av. Prof. Luiz Freire s/n \u2013 Cidade Universitaria, CEP: 0740-540, Recife, PE, Brazil"],"affiliations":[{"raw_affiliation_string":"Centro de Informatica \u2013 CIn/UFPE, Av. Prof. Luiz Freire s/n \u2013 Cidade Universitaria, CEP: 0740-540, Recife, PE, Brazil","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5079004987","display_name":"Francisco de A.T. de Carvalho","orcid":"https://orcid.org/0000-0003-1128-745X"},"institutions":[],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Francisco de A.T. de Carvalho","raw_affiliation_strings":["Centro de Informatica \u2013 CIn/UFPE, Av. Prof. Luiz Freire s/n \u2013 Cidade Universitaria, CEP: 0740-540, Recife, PE, Brazil"],"affiliations":[{"raw_affiliation_string":"Centro de Informatica \u2013 CIn/UFPE, Av. Prof. Luiz Freire s/n \u2013 Cidade Universitaria, CEP: 0740-540, Recife, PE, Brazil","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5025550530","display_name":"Teresa B. Ludermir","orcid":"https://orcid.org/0000-0002-8980-6742"},"institutions":[],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Teresa B. Ludermir","raw_affiliation_strings":["Centro de Informatica \u2013 CIn/UFPE, Av. Prof. Luiz Freire s/n \u2013 Cidade Universitaria, CEP: 0740-540, Recife, PE, Brazil"],"affiliations":[{"raw_affiliation_string":"Centro de Informatica \u2013 CIn/UFPE, Av. Prof. Luiz Freire s/n \u2013 Cidade Universitaria, CEP: 0740-540, Recife, PE, Brazil","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":5000,"currency":"EUR","value_usd":5392,"provenance":"doaj"},"apc_paid":null,"fwci":1.058,"has_fulltext":false,"cited_by_count":7,"citation_normalized_percentile":{"value":0.832959,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":79,"max":80},"biblio":{"volume":null,"issue":null,"first_page":"934","last_page":"941"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11326","display_name":"Predicting Stock Market Trends and Movements","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11326","display_name":"Predicting Stock Market Trends and Movements","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11918","display_name":"Time Series Forecasting Methods","score":0.9964,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11052","display_name":"Electricity Price and Load Forecasting Methods","score":0.9766,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/autoregressive\u2013moving-average-model","display_name":"Autoregressive\u2013moving-average model","score":0.77687585},{"id":"https://openalex.org/keywords/forecast-combination","display_name":"Forecast Combination","score":0.557365},{"id":"https://openalex.org/keywords/symbolic-data-analysis","display_name":"Symbolic data analysis","score":0.5553441},{"id":"https://openalex.org/keywords/time-series-forecasting","display_name":"Time Series Forecasting","score":0.549638},{"id":"https://openalex.org/keywords/load-forecasting","display_name":"Load Forecasting","score":0.544713},{"id":"https://openalex.org/keywords/short-term-forecasting","display_name":"Short-Term Forecasting","score":0.542376},{"id":"https://openalex.org/keywords/forecasting-models","display_name":"Forecasting Models","score":0.538286},{"id":"https://openalex.org/keywords/prediction-interval","display_name":"Prediction interval","score":0.4771454}],"concepts":[{"id":"https://openalex.org/C74883015","wikidata":"https://www.wikidata.org/wiki/Q290467","display_name":"Autoregressive\u2013moving-average model","level":3,"score":0.77687585},{"id":"https://openalex.org/C2778067643","wikidata":"https://www.wikidata.org/wiki/Q166507","display_name":"Interval (graph theory)","level":2,"score":0.7170873},{"id":"https://openalex.org/C143724316","wikidata":"https://www.wikidata.org/wiki/Q312468","display_name":"Series (stratigraphy)","level":2,"score":0.6639303},{"id":"https://openalex.org/C159877910","wikidata":"https://www.wikidata.org/wiki/Q2202883","display_name":"Autoregressive model","level":2,"score":0.64290243},{"id":"https://openalex.org/C204323151","wikidata":"https://www.wikidata.org/wiki/Q905424","display_name":"Range (aeronautics)","level":2,"score":0.59566003},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.59379745},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5570586},{"id":"https://openalex.org/C65620979","wikidata":"https://www.wikidata.org/wiki/Q7661176","display_name":"Symbolic data analysis","level":2,"score":0.5553441},{"id":"https://openalex.org/C151406439","wikidata":"https://www.wikidata.org/wiki/Q186588","display_name":"Time series","level":2,"score":0.54890895},{"id":"https://openalex.org/C103402496","wikidata":"https://www.wikidata.org/wiki/Q1106171","display_name":"Prediction interval","level":2,"score":0.4771454},{"id":"https://openalex.org/C139945424","wikidata":"https://www.wikidata.org/wiki/Q1940696","display_name":"Mean squared error","level":2,"score":0.45645568},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.4514269},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.37367114},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.32585734},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.30357492},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.280585},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.21804157},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/11893257_103","pdf_url":null,"source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":11,"referenced_works":["https://openalex.org/W1536105854","https://openalex.org/W158759942","https://openalex.org/W1979575715","https://openalex.org/W2050099778","https://openalex.org/W2117014758","https://openalex.org/W2137983211","https://openalex.org/W2142635246","https://openalex.org/W2188682579","https://openalex.org/W2313953460","https://openalex.org/W3146803896","https://openalex.org/W4229539396"],"related_works":["https://openalex.org/W4248896451","https://openalex.org/W3097417252","https://openalex.org/W3002873285","https://openalex.org/W2583246297","https://openalex.org/W2349019353","https://openalex.org/W2185837235","https://openalex.org/W2155568465","https://openalex.org/W2154965898","https://openalex.org/W199725827","https://openalex.org/W1983856919"],"abstract_inverted_index":{"This":[0],"paper":[1],"presents":[2],"two":[3,46],"approaches":[4],"to":[5,51],"symbolic":[6,63],"interval":[7,58,64,81,101],"time":[8,65,85],"series":[9,66,86],"forecasting.":[10],"The":[11,71,103],"first":[12],"approach":[13],"is":[14,26,87,109],"based":[15,27,110],"on":[16,28,111],"the":[17,24,43,52,57,62,68,74,80,84,90,95,100,106,112,115,119,128],"autoregressive":[18],"moving":[19],"average":[20,116],"(ARMA)":[21],"model":[22],"and":[23,36,54,76,97,123],"second":[25],"a":[29,131],"hybrid":[30],"methodology":[31],"that":[32],"combines":[33],"both":[34],"ARMA":[35],"artificial":[37],"neural":[38],"network":[39],"(ANN)":[40],"models.":[41],"In":[42],"proposed":[44,107],"approaches,":[45],"models":[47,108],"are":[48],"respectively":[49],"fitted":[50],"mid-point":[53,96],"range":[55,98],"of":[56,73,79,83,92,99,105,114,118,130],"values":[59],"assumed":[60],"by":[61],"in":[67,127],"learning":[69],"set.":[70],"forecast":[72],"lower":[75],"upper":[77],"bounds":[78],"value":[82],"accomplished":[88],"through":[89],"combination":[91],"forecasts":[93],"from":[94],"values.":[102],"evaluation":[104],"estimation":[113],"behaviour":[117],"mean":[120,124],"absolute":[121],"error":[122,126],"square":[125],"framework":[129],"Monte":[132],"Carlo":[133],"experiment.":[134]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2133473130","counts_by_year":[{"year":2020,"cited_by_count":1},{"year":2018,"cited_by_count":1},{"year":2016,"cited_by_count":1},{"year":2014,"cited_by_count":1},{"year":2013,"cited_by_count":1}],"updated_date":"2024-11-20T00:34:33.737480","created_date":"2016-06-24"}