iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1007/11589990_64
{"id":"https://openalex.org/W1529855992","doi":"https://doi.org/10.1007/11589990_64","title":"Time-Varying Prototype Reduction Schemes Applicable for Non-stationary Data Sets","display_name":"Time-Varying Prototype Reduction Schemes Applicable for Non-stationary Data Sets","publication_year":2005,"publication_date":"2005-01-01","ids":{"openalex":"https://openalex.org/W1529855992","doi":"https://doi.org/10.1007/11589990_64","mag":"1529855992"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/11589990_64","pdf_url":null,"source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"book-chapter","type_crossref":"book-chapter","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5114858718","display_name":"Sang\u2010Woon Kim","orcid":"https://orcid.org/0000-0002-3172-8462"},"institutions":[{"id":"https://openalex.org/I89440247","display_name":"Myongji University","ror":"https://ror.org/00s9dpb54","country_code":"KR","type":"education","lineage":["https://openalex.org/I89440247"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Sang-Woon Kim","raw_affiliation_strings":["IEEE, Dept. of Computer Science and Engineering, Myongji University, Yongin, 449-728, Korea"],"affiliations":[{"raw_affiliation_string":"IEEE, Dept. of Computer Science and Engineering, Myongji University, Yongin, 449-728, Korea","institution_ids":["https://openalex.org/I89440247"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5055634885","display_name":"B. John Oommen","orcid":"https://orcid.org/0000-0002-5105-1575"},"institutions":[{"id":"https://openalex.org/I67031392","display_name":"Carleton University","ror":"https://ror.org/02qtvee93","country_code":"CA","type":"education","lineage":["https://openalex.org/I67031392"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"B. John Oommen","raw_affiliation_strings":["IEEE, School of Computer Science, Carleton University, Ottawa, ON, K1S 5B6, Canada"],"affiliations":[{"raw_affiliation_string":"IEEE, School of Computer Science, Carleton University, Ottawa, ON, K1S 5B6, Canada","institution_ids":["https://openalex.org/I67031392"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":5000,"currency":"EUR","value_usd":5392,"provenance":"doaj"},"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":61},"biblio":{"volume":null,"issue":null,"first_page":"614","last_page":"623"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12535","display_name":"Learning with Noisy Labels in Machine Learning","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12535","display_name":"Learning with Noisy Labels in Machine Learning","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12072","display_name":"Active Learning in Machine Learning Research","score":0.9758,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10743","display_name":"Automated Software Testing Techniques","score":0.9755,"subfield":{"id":"https://openalex.org/subfields/1712","display_name":"Software"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/data-reduction","display_name":"Data reduction","score":0.6179896},{"id":"https://openalex.org/keywords/hyperparameter-optimization","display_name":"Hyperparameter Optimization","score":0.520073},{"id":"https://openalex.org/keywords/variable-selection","display_name":"Variable Selection","score":0.509164},{"id":"https://openalex.org/keywords/multivariate-calibration","display_name":"Multivariate Calibration","score":0.507298},{"id":"https://openalex.org/keywords/robust-learning","display_name":"Robust Learning","score":0.503432}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8602102},{"id":"https://openalex.org/C153914771","wikidata":"https://www.wikidata.org/wiki/Q5227343","display_name":"Data reduction","level":2,"score":0.6179896},{"id":"https://openalex.org/C111335779","wikidata":"https://www.wikidata.org/wiki/Q3454686","display_name":"Reduction (mathematics)","level":2,"score":0.61407536},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.4169645},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.2727095},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.09362897},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.050608844}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/11589990_64","pdf_url":null,"source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":15,"referenced_works":["https://openalex.org/W1591261915","https://openalex.org/W1610836425","https://openalex.org/W1994410331","https://openalex.org/W2019762723","https://openalex.org/W2037278428","https://openalex.org/W2056609019","https://openalex.org/W2069473723","https://openalex.org/W2092353981","https://openalex.org/W2098631313","https://openalex.org/W2105306795","https://openalex.org/W2113066515","https://openalex.org/W2116283693","https://openalex.org/W2138798794","https://openalex.org/W2162583212","https://openalex.org/W2167265457"],"related_works":["https://openalex.org/W4311427401","https://openalex.org/W2984382626","https://openalex.org/W2355043271","https://openalex.org/W2352590024","https://openalex.org/W2351220851","https://openalex.org/W2168287352","https://openalex.org/W2100576227","https://openalex.org/W2087637582","https://openalex.org/W2056496840","https://openalex.org/W2029016205"],"abstract_inverted_index":{"All":[0],"of":[1,21,47,51],"the":[2,12,58,70,82,85,107],"Prototype":[3],"Reduction":[4],"Schemes":[5],"(PRS)":[6],"which":[7,102],"have":[8],"been":[9],"reported":[10,109],"in":[11,26,39,120],"literature,":[13],"process":[14,56],"time-invariant":[15],"data":[16,59,87],"to":[17,80,103],"yield":[18,81],"a":[19,61,65,74,95],"subset":[20],"prototypes":[22,83],"that":[23,69],"are":[24,41,106],"useful":[25],"nearest-neighbor-like":[27],"classification.":[28],"In":[29,49],"this":[30,90],"paper,":[31],"we":[32,67],"suggest":[33],"two":[34,44],"time-varying":[35],"PRS":[36,76,113],"mechanisms":[37],"which,":[38],"turn,":[40],"suitable":[42,115],"for":[43,84,112,116],"distinct":[45],"models":[46],"non-stationarity.":[48],"both":[50],"these":[52],"models,":[53],"rather":[54],"than":[55],"all":[57],"as":[60],"whole":[62],"set":[63],"using":[64,94],"PRS,":[66],"propose":[68],"information":[71],"gleaned":[72],"from":[73],"previous":[75],"computation":[77],"be":[78],"enhanced":[79],"current":[86],"set,":[88],"and":[89],"enhancement":[91],"is":[92],"accomplished":[93],"LVQ3-type":[96],"\"fine":[97],"tuning\".":[98],"The":[99],"experimental":[100],"results,":[101],"our":[104,121],"knowledge":[105],"first":[108],"results":[110],"applicable":[111],"schemes":[114],"non-stationary":[117],"data,":[118],"are,":[119],"opinion,":[122],"very":[123],"impressive.":[124]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1529855992","counts_by_year":[],"updated_date":"2024-11-30T15:58:49.814937","created_date":"2016-06-24"}