iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1002/WIDM.1494
{"id":"https://openalex.org/W4323315704","doi":"https://doi.org/10.1002/widm.1494","title":"Unsupervised EHR\u2010based phenotyping via matrix and tensor decompositions","display_name":"Unsupervised EHR\u2010based phenotyping via matrix and tensor decompositions","publication_year":2023,"publication_date":"2023-03-05","ids":{"openalex":"https://openalex.org/W4323315704","doi":"https://doi.org/10.1002/widm.1494"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1002/widm.1494","pdf_url":null,"source":{"id":"https://openalex.org/S2505707916","display_name":"Wiley Interdisciplinary Reviews Data Mining and Knowledge Discovery","issn_l":"1942-4795","issn":["1942-4795","1942-4787"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320595","host_organization_name":"Wiley","host_organization_lineage":["https://openalex.org/P4310320595"],"host_organization_lineage_names":["Wiley"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2209.00322","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5019245843","display_name":"Florian Becker","orcid":"https://orcid.org/0000-0003-2268-8232"},"institutions":[{"id":"https://openalex.org/I4210153474","display_name":"Simula Metropolitan Center for Digital Engineering","ror":"https://ror.org/04xtarr15","country_code":"NO","type":"nonprofit","lineage":["https://openalex.org/I184531372","https://openalex.org/I2799829267","https://openalex.org/I4210153474"]},{"id":"https://openalex.org/I184531372","display_name":"OsloMet \u2013 Oslo Metropolitan University","ror":"https://ror.org/04q12yn84","country_code":"NO","type":"education","lineage":["https://openalex.org/I184531372"]}],"countries":["NO"],"is_corresponding":false,"raw_author_name":"Florian Becker","raw_affiliation_strings":["Oslo Metropolitan University, Oslo, Norway","Simula Metropolitan Center for Digital Engineering, Oslo, Norway"],"affiliations":[{"raw_affiliation_string":"Simula Metropolitan Center for Digital Engineering, Oslo, Norway","institution_ids":["https://openalex.org/I4210153474"]},{"raw_affiliation_string":"Oslo Metropolitan University, Oslo, Norway","institution_ids":["https://openalex.org/I184531372"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5083251527","display_name":"Age K. Smilde","orcid":"https://orcid.org/0000-0002-3052-4644"},"institutions":[{"id":"https://openalex.org/I4210153474","display_name":"Simula Metropolitan Center for Digital Engineering","ror":"https://ror.org/04xtarr15","country_code":"NO","type":"nonprofit","lineage":["https://openalex.org/I184531372","https://openalex.org/I2799829267","https://openalex.org/I4210153474"]},{"id":"https://openalex.org/I887064364","display_name":"University of Amsterdam","ror":"https://ror.org/04dkp9463","country_code":"NL","type":"education","lineage":["https://openalex.org/I887064364"]}],"countries":["NL","NO"],"is_corresponding":false,"raw_author_name":"Age K. Smilde","raw_affiliation_strings":["Simula Metropolitan Center for Digital Engineering, Oslo, Norway","Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands"],"affiliations":[{"raw_affiliation_string":"Simula Metropolitan Center for Digital Engineering, Oslo, Norway","institution_ids":["https://openalex.org/I4210153474"]},{"raw_affiliation_string":"Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands","institution_ids":["https://openalex.org/I887064364"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5046236337","display_name":"Evrim Acar","orcid":"https://orcid.org/0000-0002-3737-292X"},"institutions":[{"id":"https://openalex.org/I4210153474","display_name":"Simula Metropolitan Center for Digital Engineering","ror":"https://ror.org/04xtarr15","country_code":"NO","type":"nonprofit","lineage":["https://openalex.org/I184531372","https://openalex.org/I2799829267","https://openalex.org/I4210153474"]}],"countries":["NO"],"is_corresponding":true,"raw_author_name":"Evrim Acar","raw_affiliation_strings":["Simula Metropolitan Center for Digital Engineering, Oslo, Norway"],"affiliations":[{"raw_affiliation_string":"Simula Metropolitan Center for Digital Engineering, Oslo, Norway","institution_ids":["https://openalex.org/I4210153474"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":["https://openalex.org/A5046236337"],"corresponding_institution_ids":["https://openalex.org/I4210153474"],"apc_list":{"value":4070,"currency":"USD","value_usd":4070,"provenance":"doaj"},"apc_paid":null,"fwci":2.302,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":5,"citation_normalized_percentile":{"value":0.996248,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":91,"max":92},"biblio":{"volume":"13","issue":"4","first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12303","display_name":"Tensor decomposition and applications","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/2605","display_name":"Computational Mathematics"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12303","display_name":"Tensor decomposition and applications","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/2605","display_name":"Computational Mathematics"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13702","display_name":"Machine Learning in Healthcare","score":0.9968,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11396","display_name":"Artificial Intelligence in Healthcare","score":0.9087,"subfield":{"id":"https://openalex.org/subfields/3605","display_name":"Health Information Management"},"field":{"id":"https://openalex.org/fields/36","display_name":"Health Professions"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/interpretability","display_name":"Interpretability","score":0.86351126},{"id":"https://openalex.org/keywords/rank","display_name":"Rank (graph theory)","score":0.53096545}],"concepts":[{"id":"https://openalex.org/C2781067378","wikidata":"https://www.wikidata.org/wiki/Q17027399","display_name":"Interpretability","level":2,"score":0.86351126},{"id":"https://openalex.org/C155281189","wikidata":"https://www.wikidata.org/wiki/Q3518150","display_name":"Tensor (intrinsic definition)","level":2,"score":0.63206196},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.599361},{"id":"https://openalex.org/C111030470","wikidata":"https://www.wikidata.org/wiki/Q1430460","display_name":"Curse of dimensionality","level":2,"score":0.55760324},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.54118127},{"id":"https://openalex.org/C164226766","wikidata":"https://www.wikidata.org/wiki/Q7293202","display_name":"Rank (graph theory)","level":2,"score":0.53096545},{"id":"https://openalex.org/C42355184","wikidata":"https://www.wikidata.org/wiki/Q1361088","display_name":"Matrix decomposition","level":3,"score":0.5290241},{"id":"https://openalex.org/C75684735","wikidata":"https://www.wikidata.org/wiki/Q858810","display_name":"Big data","level":2,"score":0.4901827},{"id":"https://openalex.org/C70518039","wikidata":"https://www.wikidata.org/wiki/Q16000077","display_name":"Dimensionality reduction","level":2,"score":0.485806},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.480298},{"id":"https://openalex.org/C534262118","wikidata":"https://www.wikidata.org/wiki/Q177719","display_name":"Medical diagnosis","level":2,"score":0.46288297},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.43620688},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.2605006},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.13461852},{"id":"https://openalex.org/C158693339","wikidata":"https://www.wikidata.org/wiki/Q190524","display_name":"Eigenvalues and eigenvectors","level":2,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C142724271","wikidata":"https://www.wikidata.org/wiki/Q7208","display_name":"Pathology","level":1,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1002/widm.1494","pdf_url":null,"source":{"id":"https://openalex.org/S2505707916","display_name":"Wiley Interdisciplinary Reviews Data Mining and Knowledge Discovery","issn_l":"1942-4795","issn":["1942-4795","1942-4787"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320595","host_organization_name":"Wiley","host_organization_lineage":["https://openalex.org/P4310320595"],"host_organization_lineage_names":["Wiley"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.00322","pdf_url":"https://arxiv.org/pdf/2209.00322","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.00322","pdf_url":"https://arxiv.org/pdf/2209.00322","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320323299","funder_display_name":"Norges Forskningsr\u00e5d","award_id":"300034"}],"datasets":[],"versions":[],"referenced_works_count":105,"referenced_works":["https://openalex.org/W1480059945","https://openalex.org/W1615057313","https://openalex.org/W162377824","https://openalex.org/W1737136247","https://openalex.org/W1808652302","https://openalex.org/W1890978265","https://openalex.org/W1902027874","https://openalex.org/W1963826206","https://openalex.org/W1969116741","https://openalex.org/W1976801265","https://openalex.org/W1989811026","https://openalex.org/W1994219736","https://openalex.org/W1998249118","https://openalex.org/W2000215628","https://openalex.org/W2004734764","https://openalex.org/W2024165284","https://openalex.org/W2046788142","https://openalex.org/W2048687561","https://openalex.org/W2057503509","https://openalex.org/W2061370212","https://openalex.org/W2062458775","https://openalex.org/W2064321206","https://openalex.org/W2071729267","https://openalex.org/W2103647821","https://openalex.org/W2107483979","https://openalex.org/W2117420919","https://openalex.org/W2117587045","https://openalex.org/W2118883481","https://openalex.org/W2119741678","https://openalex.org/W2121382432","https://openalex.org/W2124996938","https://openalex.org/W2126762950","https://openalex.org/W2135001774","https://openalex.org/W2135496322","https://openalex.org/W2140862024","https://openalex.org/W2140968209","https://openalex.org/W2141280932","https://openalex.org/W2141478764","https://openalex.org/W2145962650","https://openalex.org/W2150059498","https://openalex.org/W2154325203","https://openalex.org/W2160047866","https://openalex.org/W2167838035","https://openalex.org/W2169767637","https://openalex.org/W2258054274","https://openalex.org/W2295124130","https://openalex.org/W2302696457","https://openalex.org/W2305426319","https://openalex.org/W2315452447","https://openalex.org/W2316335611","https://openalex.org/W2396881363","https://openalex.org/W2467651252","https://openalex.org/W2490308495","https://openalex.org/W2518582440","https://openalex.org/W2561915573","https://openalex.org/W2562568662","https://openalex.org/W2577015358","https://openalex.org/W2580957850","https://openalex.org/W2604652149","https://openalex.org/W2604836086","https://openalex.org/W2606065148","https://openalex.org/W2734770034","https://openalex.org/W2754794949","https://openalex.org/W2763148304","https://openalex.org/W2764595897","https://openalex.org/W2775548961","https://openalex.org/W2785676486","https://openalex.org/W2803290558","https://openalex.org/W2805089815","https://openalex.org/W2808129629","https://openalex.org/W2904119616","https://openalex.org/W2912675712","https://openalex.org/W2923757114","https://openalex.org/W2944450781","https://openalex.org/W2946068081","https://openalex.org/W2949982560","https://openalex.org/W2951881727","https://openalex.org/W2962985209","https://openalex.org/W2963999633","https://openalex.org/W2964343053","https://openalex.org/W2969522674","https://openalex.org/W3000238064","https://openalex.org/W3005205952","https://openalex.org/W3012523953","https://openalex.org/W3027889410","https://openalex.org/W3042828037","https://openalex.org/W3080327921","https://openalex.org/W3093949192","https://openalex.org/W3096500023","https://openalex.org/W3098758500","https://openalex.org/W3099910538","https://openalex.org/W3104523752","https://openalex.org/W3105221338","https://openalex.org/W3105446653","https://openalex.org/W3119564402","https://openalex.org/W3122868618","https://openalex.org/W3141562538","https://openalex.org/W3148279983","https://openalex.org/W3196902305","https://openalex.org/W3204697898","https://openalex.org/W3216054653","https://openalex.org/W4225938738","https://openalex.org/W4283696279","https://openalex.org/W4318816591","https://openalex.org/W925060454"],"related_works":["https://openalex.org/W3089231081","https://openalex.org/W2354420595","https://openalex.org/W2187269125","https://openalex.org/W2166963679","https://openalex.org/W2093956241","https://openalex.org/W2074396517","https://openalex.org/W1995622179","https://openalex.org/W1641615907","https://openalex.org/W1552543208","https://openalex.org/W1484111231"],"abstract_inverted_index":{"Abstract":[0],"Computational":[1],"phenotyping":[2,168],"allows":[3],"for":[4,62,116,156,181],"unsupervised":[5],"discovery":[6],"of":[7,9,41,152,184,190,205],"subgroups":[8],"patients":[10],"as":[11,13,71,123],"well":[12],"corresponding":[14],"co\u2010occurring":[15],"medical":[16,47],"conditions":[17],"from":[18,134],"electronic":[19],"health":[20],"records":[21],"(EHR).":[22],"Typically,":[23],"EHR":[24,120,136],"data":[25,67,98,121,126],"contains":[26],"demographic":[27],"information,":[28],"diagnoses":[29],"and":[30,43,51,58,77,90,105,128,207],"laboratory":[31],"results.":[32],"Discovering":[33],"(novel)":[34],"phenotypes":[35,133],"has":[36,137],"the":[37,182,188],"potential":[38],"to":[39],"be":[40],"prognostic":[42],"therapeutic":[44],"value.":[45],"Providing":[46],"practitioners":[48],"with":[49],"transparent":[50,89],"interpretable":[52,91],"results":[53],"is":[54,162,195],"an":[55,59],"important":[56],"requirement":[57],"essential":[60],"part":[61],"advancing":[63],"precision":[64],"medicine.":[65],"Low\u2010rank":[66],"approximation":[68,99],"methods":[69,100],"such":[70,88,122],"matrix":[72,75,172],"(e.g.,":[73,80],"nonnegative":[74],"factorization)":[76],"tensor":[78,174],"decompositions":[79],"CANDECOMP/PARAFAC)":[81],"have":[82,95],"demonstrated":[83],"that":[84,107,186],"they":[85,113],"can":[86],"provide":[87,148],"insights.":[92],"Recent":[93],"developments":[94],"adapted":[96],"low\u2010rank":[97,153],"by":[101],"incorporating":[102],"different":[103,179],"constraints":[104],"regularizations":[106],"facilitate":[108],"interpretability":[109],"further.":[110],"In":[111,144],"addition,":[112],"offer":[114],"solutions":[115],"common":[117],"challenges":[118],"within":[119],"high":[124],"dimensionality,":[125],"sparsity":[127],"incompleteness.":[129],"Especially":[130],"extracting":[131],"temporal":[132,165],"longitudinal":[135],"received":[138],"much":[139],"attention":[140],"in":[141],"recent":[142],"years.":[143],"this":[145],"paper,":[146],"we":[147,177],"a":[149],"comprehensive":[150],"review":[151],"approximation\u2010based":[154],"approaches":[155,169,180],"computational":[157],"phenotyping.":[158],"The":[159],"existing":[160],"literature":[161],"categorized":[163,196],"into":[164],"versus":[166,173],"static":[167],"based":[170],"on":[171],"decompositions.":[175],"Furthermore,":[176],"outline":[178],"validation":[183],"phenotypes,":[185],"is,":[187],"assessment":[189],"clinical":[191],"significance.":[192],"This":[193],"article":[194],"under:":[197],"Algorithmic":[198],"Development":[199],">":[200,209,213],"Structure":[201],"Discovery":[202],"Fundamental":[203],"Concepts":[204],"Data":[206],"Knowledge":[208],"Explainable":[210],"AI":[211],"Technologies":[212],"Machine":[214],"Learning":[215]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4323315704","counts_by_year":[{"year":2024,"cited_by_count":4},{"year":2023,"cited_by_count":1}],"updated_date":"2024-12-10T18:46:53.202974","created_date":"2023-03-07"}