iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.3390/SYM15081576
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,4,10]],"date-time":"2024-04-10T09:08:38Z","timestamp":1712740118522},"reference-count":30,"publisher":"MDPI AG","issue":"8","license":[{"start":{"date-parts":[[2023,8,12]],"date-time":"2023-08-12T00:00:00Z","timestamp":1691798400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"Natural Science Foundation of Anhui Province Higher School","award":["KJ2020A0780","KJ2021A1154","2022AH051859","2022AH051864"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Symmetry"],"abstract":"The striking goal of this study is to introduce a q-identity for a parameterized integral operator via differentiable function. First, we discover the parameterized lemma for the q-integral. After that, we provide several q-differentiable inequalities. By taking suitable choices, some interesting results are obtained. With all of these, we displayed the findings from the traditional analysis utilizing q\u21921\u2212.<\/jats:p>","DOI":"10.3390\/sym15081576","type":"journal-article","created":{"date-parts":[[2023,8,14]],"date-time":"2023-08-14T14:20:14Z","timestamp":1692022814000},"page":"1576","source":"Crossref","is-referenced-by-count":1,"title":["Novel q-Differentiable Inequalities"],"prefix":"10.3390","volume":"15","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5804-5370","authenticated-orcid":false,"given":"Xuewu","family":"Zuo","sequence":"first","affiliation":[{"name":"General Education Department, Anhui Xinhua University, Hefei 230088, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7192-8269","authenticated-orcid":false,"given":"Saad Ihsan","family":"Butt","sequence":"additional","affiliation":[{"name":"Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9911-1111","authenticated-orcid":false,"given":"Muhammad","family":"Umar","sequence":"additional","affiliation":[{"name":"Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8843-955X","authenticated-orcid":false,"given":"H\u00fcseyin","family":"Budak","sequence":"additional","affiliation":[{"name":"Department of Mathematics, Faculty of Science and Arts, D\u00fczce University, D\u00fczce 81620, T\u00fcrkiye"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5341-4926","authenticated-orcid":false,"given":"Muhammad Aamir","family":"Ali","sequence":"additional","affiliation":[{"name":"Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China"}]}],"member":"1968","published-online":{"date-parts":[[2023,8,12]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","unstructured":"Mitrinovi\u0107, D.S., Pe\u010dari\u0107, J.E., and Fink, A.M. (1993). Classical and New Inequalities in Analysis, Mathematics and Its Applications, Kluwer Academic Publishers Group.","DOI":"10.1007\/978-94-017-1043-5"},{"key":"ref_2","unstructured":"Dragomir, S.S., and Pearce, C.E.M. (2000). Selected Topics on Hermite-Hadamard Inequalities and Applications, Victoria University. RGMIA Monographs."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1016\/S0096-3003(02)00657-4","article-title":"Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula","volume":"147","author":"Kirmaci","year":"2004","journal-title":"Appl. Math. Comput."},{"key":"ref_4","first-page":"243","article-title":"Some Hermite\u2013Hadamard type inequalities for differentiable convex functions and applications","volume":"42","author":"Qi","year":"2013","journal-title":"Hacet. J. Math. Stat."},{"key":"ref_5","unstructured":"Butt, S.I., and Pe\u010dari\u0107, J. (2018). Popoviciu\u2019S Inequality for n-Convex Functions, Lap Lambert Academic Publishing."},{"key":"ref_6","doi-asserted-by":"crossref","unstructured":"Agarwal, P., Dragomir, S.S., Jleli, M., and Samet, B. (2018). Advances in Mathematical Inequalities and Applications, Springer.","DOI":"10.1007\/978-981-13-3013-1"},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"9705","DOI":"10.3934\/math.2021565","article-title":"Dynamical significance of generalized fractional integral inequalities via convexity","volume":"6","author":"Ali","year":"2021","journal-title":"AIMS Math."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"76","DOI":"10.1186\/s13660-023-02963-9","article-title":"Structure of a generalized class of weights satisfy weighted reverse H\u00f6lder\u2019s inequality","volume":"2023","author":"Saker","year":"2023","journal-title":"J. Inequal. Appl."},{"key":"ref_9","doi-asserted-by":"crossref","unstructured":"Zakarya, M., Saied, A.I., Ali, M., Rezk, H.M., and Kenawy, M.R. (2023). Novel Integral Inequalities on Nabla Time Scales with C-Monotonic Functions. Symmetry, 15.","DOI":"10.3390\/sym15061248"},{"key":"ref_10","unstructured":"Ernst, T. (2000). The History of q-Calculus and New Method, Department of Mathematics, Uppsala University."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"281","DOI":"10.1016\/S0898-1221(04)90025-9","article-title":"Integral Inequalities in q-Calculus","volume":"47","author":"Gauchman","year":"2004","journal-title":"Comput. Math. Appl."},{"key":"ref_12","first-page":"193","article-title":"On a q-Definite Integrals","volume":"41","author":"Jackson","year":"1910","journal-title":"Q. J. Pure Appl. Math."},{"key":"ref_13","doi-asserted-by":"crossref","unstructured":"Kac, V., and Cheung, P. (2002). Quantum Calculus Universitext, Springer.","DOI":"10.1007\/978-1-4613-0071-7"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"282","DOI":"10.1186\/1687-1847-2013-282","article-title":"Quantum Calculus on Finite Intervals and Applications to Impulsive Difference Equations","volume":"2013","author":"Tariboon","year":"2013","journal-title":"Adv. Differ. Equ."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1186\/1029-242X-2014-121","article-title":"Quantum Integral Inequalities on finite Intervals","volume":"2014","author":"Tariboon","year":"2014","journal-title":"J. Inequal. Appl."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"364","DOI":"10.1007\/s10474-020-01025-6","article-title":"On q-Hermite-Hadamard Inequalities for General Convex Functions","volume":"162","author":"Bermudo","year":"2020","journal-title":"Acta Math. Hung."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1016\/j.jksus.2016.09.007","article-title":"q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions","volume":"30","author":"Alp","year":"2018","journal-title":"J. King Saud Univ. Sci."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"675","DOI":"10.1016\/j.amc.2014.11.090","article-title":"Some quantum estimates for Hermite-Hadamard inequalities","volume":"251","author":"Noor","year":"2015","journal-title":"Appl. Math. Comput."},{"key":"ref_19","first-page":"199","article-title":"Some trapezoid and midpoint type inequalities for newly defined quantum integrals","volume":"40","author":"Budak","year":"2021","journal-title":"Proyecc. J. Math."},{"key":"ref_20","doi-asserted-by":"crossref","unstructured":"Butt, S.I., Budak, H., and Nonlaopon, K. (2022). New Variants of Quantum Midpoint-Type Inequalities. Symmetry, 14.","DOI":"10.3390\/sym14122599"},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"378","DOI":"10.1002\/mma.6742","article-title":"Simpson\u2019s and Newton\u2019s Type Inequalities for Convex Functions via Newly Defined Quantum Integrals","volume":"44","author":"Budak","year":"2020","journal-title":"Math. Methods Appl. Sci."},{"key":"ref_22","first-page":"1","article-title":"Quantum Hermite\u2013Hadamard-Type Inequalities for Functions with Convex Absolute Values of Second q\u03bd-Derivatives","volume":"7","author":"Ali","year":"2021","journal-title":"Adv. Differ. Equ."},{"key":"ref_23","first-page":"6631474","article-title":"Quantum integral inequalities with respect to Raina\u2019s function via coordinated generalized \u03c8-convex functions with applications","volume":"2021","author":"Rashid","year":"2021","journal-title":"J. Funct. Space"},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1186\/s13662-020-02559-3","article-title":"Quantum Hermite-Hadamard Inequality by Means of a Green Function","volume":"2020","author":"Khan","year":"2020","journal-title":"Adv. Differ. Equ."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"2057","DOI":"10.3390\/math10122057","article-title":"Stancu-Type Generalized q-Bernstein-Kantorovich Operators Involving B\u00e9zier Bases","volume":"10","author":"Cheng","year":"2022","journal-title":"Mathematics"},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"369","DOI":"10.1515\/ms-2023-0029","article-title":"A new version of q-Hermite\u2013Hadamard\u2019s midpoint and trapezoid type inequalities for convex functions Math","volume":"73","author":"Ali","year":"2023","journal-title":"Slovaca"},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"10321","DOI":"10.1007\/s00500-022-07345-9","article-title":"New bounds for q-midpoint-type inequalities via twice q-differentiable functions on quantum calculus","volume":"19","author":"Alp","year":"2022","journal-title":"Soft Comput."},{"key":"ref_28","doi-asserted-by":"crossref","unstructured":"Soontharanon, J., Ali, M.A., Budak, H., Nonlaopon, K., and Abdullah, Z. (2022). Simpson\u2019s and Newton\u2019s inequalities for (\u03b1,m)-convex functions via quantum calculus. Symmetry, 14.","DOI":"10.3390\/sym14040736"},{"key":"ref_29","doi-asserted-by":"crossref","unstructured":"Sial, I.B., Mei, S., and Nonlaopon, M.A.A.K. (2021). On some generalized Simpson\u2019s and Newton\u2019s inequalities for (\u03b1,m)-convex functions in q-calculus. Mathematics, 9.","DOI":"10.3390\/math9243266"},{"key":"ref_30","doi-asserted-by":"crossref","unstructured":"Wannalookkhee, F., Nonlaopon, K., Sarikaya, M.Z., Budak, H., and Ali, M. (Mathematics, 2023). Some new q-Bullen type inequalities for q-differentiable convex functions, Mathematics, in press.","DOI":"10.1186\/s13660-023-02917-1"}],"container-title":["Symmetry"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2073-8994\/15\/8\/1576\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,8,14]],"date-time":"2023-08-14T15:14:43Z","timestamp":1692026083000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2073-8994\/15\/8\/1576"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,8,12]]},"references-count":30,"journal-issue":{"issue":"8","published-online":{"date-parts":[[2023,8]]}},"alternative-id":["sym15081576"],"URL":"https:\/\/doi.org\/10.3390\/sym15081576","relation":{},"ISSN":["2073-8994"],"issn-type":[{"value":"2073-8994","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,8,12]]}}}