iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.3390/SYM15040925
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,3]],"date-time":"2024-09-03T05:10:43Z","timestamp":1725340243936},"reference-count":35,"publisher":"MDPI AG","issue":"4","license":[{"start":{"date-parts":[[2023,4,16]],"date-time":"2023-04-16T00:00:00Z","timestamp":1681603200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"Prince sattam bin Abdulaziz University","award":["PSAU\/2023\/R\/1444"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Symmetry"],"abstract":"Hermite\u2013Hadamard inequalities and their refinements have been investigated for a long period of time. In this paper, we obtained refinements of the Hermite\u2013Hadamard inequality of tensorial type for the convex functions of self-adjoint operators in Hilbert spaces. The obtained inequalities generalize the previously obtained inequalities by Dragomir. We also provide useful Lemmas which enabled us to obtain the results. The examples of the obtained inequalities for specific convex functions have been given in the example and consequences section. Symmetry in the upper and lower bounds can be seen in the last Theorem of the paper given, as the upper and lower bounds differ by a constant.<\/jats:p>","DOI":"10.3390\/sym15040925","type":"journal-article","created":{"date-parts":[[2023,4,17]],"date-time":"2023-04-17T07:14:09Z","timestamp":1681715649000},"page":"925","source":"Crossref","is-referenced-by-count":4,"title":["Some Refinements of the Tensorial Inequalities in Hilbert Spaces"],"prefix":"10.3390","volume":"15","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-4244-4342","authenticated-orcid":false,"given":"Vuk","family":"Stojiljkovi\u0107","sequence":"first","affiliation":[{"name":"Faculty of Science, University of Novi Sad, Trg Dositeja Obradovi\u0107a 3, 21000 Novi Sad, Serbia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9027-0810","authenticated-orcid":false,"given":"Rajagopalan","family":"Ramaswamy","sequence":"additional","affiliation":[{"name":"Department of Mathematics, College of Science and Humanities, Prince Sattam bin Abdulaziz Univeristy, Al-Kharj 16278, Saudi Arabia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1687-3212","authenticated-orcid":false,"given":"Ola A. Ashour","family":"Abdelnaby","sequence":"additional","affiliation":[{"name":"Department of Mathematics, College of Science and Humanities, Prince Sattam bin Abdulaziz Univeristy, Al-Kharj 16278, Saudi Arabia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8254-6688","authenticated-orcid":false,"given":"Stojan","family":"Radenovi\u0107","sequence":"additional","affiliation":[{"name":"Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Beograd, Serbia"}]}],"member":"1968","published-online":{"date-parts":[[2023,4,16]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","unstructured":"Mitrinovic, D.S. (1970). Analytic Inequalities, Springer.","DOI":"10.1007\/978-3-642-99970-3"},{"key":"ref_2","unstructured":"Pe\u010dari\u0107, J., Proschan, F., and Tong, Y. (1992). Convex Functions, Partial Orderings, and Statistical Applications, Academic Press, Inc."},{"key":"ref_3","doi-asserted-by":"crossref","unstructured":"Stojiljkovi\u0107, V., Ramaswamy, R., Abdelnaby, O.A.A., and Radenovi\u0107, S. (2022). Some Novel Inequalities for LR-(k,h-m)-p Convex Interval Valued Functions by Means of Pseudo Order Relation. Fractal Fract., 6.","DOI":"10.3390\/fractalfract6120726"},{"key":"ref_4","doi-asserted-by":"crossref","unstructured":"Stojiljkovi\u0107, V., Ramaswamy, R., Alshammari, F., Ashour, O.A., Alghazwani, M.L.H., and Radenovi\u0107, S. (2022). Hermite\u2013Hadamard Type Inequalities Involving (k-p) Fractional Operator for Various Types of Convex Functions. Fractal Fract., 6.","DOI":"10.3390\/fractalfract6070376"},{"key":"ref_5","doi-asserted-by":"crossref","unstructured":"Stojiljkovi\u0107, V., Ramaswamy, R., Ashour Abdelnaby, O.A., and Radenovi\u0107, S. (2022). RiemannLiouville Fractional Inclusions for Convex Functions Using Interval Valued Setting. Mathematics, 10.","DOI":"10.3390\/math10193491"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"503","DOI":"10.29020\/nybg.ejpam.v16i1.4689","article-title":"Hermite Hadamard Type Inequalities Involving (k-p) Fractional Operator with (\u03b1, h-m)-p convexity","volume":"16","author":"Stojiljkovic","year":"2023","journal-title":"Eur. J. Pure Appl. Math."},{"key":"ref_7","doi-asserted-by":"crossref","unstructured":"Afzal, W., Abbas, M., Mac\u00edas-D\u00edaz, J.E., and Trean\u0163\u0103, S. (2022). Some H-Godunova-Levin Function Inequalities Using Center Radius (Cr) Order Relation. Fractal Fract., 6.","DOI":"10.3390\/fractalfract6090518"},{"key":"ref_8","doi-asserted-by":"crossref","unstructured":"Afzal, W., Alb Lupa\u015f, A., and Shabbir, K. (2022). Hermite\u2013Hadamard and Jensen-Type Inequalities for Harmonical (h1, h2)-Godunova-Levin Interval-Valued Functions. Mathematics, 10.","DOI":"10.3390\/math10162970"},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"3303","DOI":"10.3934\/math.2023170","article-title":"Jensen and Hermite\u2013Hadamard type inclusions for harmonical h-Godunova-Levin functions","volume":"8","author":"Afzal","year":"2023","journal-title":"AIMS Math."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"19372","DOI":"10.3934\/math.20221064","article-title":"Generalized version of Jensen and Hermite\u2013Hadamard inequalities for interval-valued (h1, h2)- Godunova-Levin functions","volume":"7","author":"Afzal","year":"2022","journal-title":"AIMS Math."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"1696","DOI":"10.3934\/math.2023087","article-title":"Some properties and inequalities for generalized class of harmonical Godunova-Levin function via center radius order relation","volume":"8","author":"Afzal","year":"2023","journal-title":"AIMS Math."},{"key":"ref_12","first-page":"5533491","article-title":"Hermite\u2013Hadamard type inequalities via generalized harmonic exponential convexity and applications","volume":"2021","author":"Butt","year":"2021","journal-title":"J. Funct. Spaces"},{"key":"ref_13","first-page":"287","article-title":"Some New Hermite\u2013Hadamard, Hermite\u2013Hadamard Fejer and Weighted Hardy Type Inequalities Involving (k-p) Riemann- Liouville Fractional Integral Operator","volume":"16","author":"Chandola","year":"2022","journal-title":"Appl. Math. Inf. Sci."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"1274","DOI":"10.1016\/j.jmaa.2016.09.018","article-title":"Hermite\u2013Hadamard and Hermite\u2013Hadamard-Fejr type inequalities for generalized fractional integrals","volume":"446","author":"Chen","year":"2017","journal-title":"J. Math. Anal. Appl."},{"key":"ref_15","first-page":"405","article-title":"Convex inequalities in Hilbert spaces","volume":"19","author":"Mond","year":"1993","journal-title":"Houst. J. Math."},{"key":"ref_16","first-page":"645","article-title":"Bounds for Jensen\u2019s inequality for several operators","volume":"20","author":"Mond","year":"1994","journal-title":"Houst. J. Math."},{"key":"ref_17","first-page":"83","article-title":"Inequalities of Furuta and Mond-Pecaric","volume":"2","author":"Seo","year":"1999","journal-title":"Math. Ineq. Appl."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"766","DOI":"10.1016\/j.amc.2011.01.056","article-title":"Hermite\u2013Hadamard\u2019s type inequalities for operator convex functions","volume":"218","author":"Dragomir","year":"2011","journal-title":"Appl. Math. Comput."},{"key":"ref_19","unstructured":"Ghazanfari, A.G. (2012). Some new Hermite\u2013Hadamard type inequalities for two operator convex function. arXiv."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"451","DOI":"10.1186\/1029-242X-2014-451","article-title":"Operator P-class functions","volume":"2014","author":"Bakherad","year":"2014","journal-title":"J. Inequalities Appl."},{"key":"ref_21","unstructured":"Pe\u010dari\u0107, J., Furuta, T., Hot, J.M., and Seo, Y. (2005). Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element."},{"key":"ref_22","doi-asserted-by":"crossref","unstructured":"Dragomir, S.S. (2013). Inequalities for the Numerical Radius of Linear Operators in Hilbert Spaces, Springer.","DOI":"10.1007\/978-3-319-01448-7"},{"key":"ref_23","doi-asserted-by":"crossref","unstructured":"Alomari, M.W., Bercu, G., and Chesneau, C. (2022). On the Dragomir Extension of Furuta\u2019s Inequality and Numerical Radius Inequalities. Symmetry, 14.","DOI":"10.3390\/sym14071432"},{"key":"ref_24","doi-asserted-by":"crossref","unstructured":"Altwaijry, N., Feki, K., and Minculete, N. (2023). On Some Generalizations of Cauchy-Schwarz Inequalities and Their Applications. Symmetry, 15.","DOI":"10.3390\/sym15020304"},{"key":"ref_25","doi-asserted-by":"crossref","unstructured":"Wang, X., and Lv, H. (2023). Quasi-Double Diagonally Dominant H-Tensors and the Estimation Inequalities for the Spectral Radius of Nonnegative Tensors. Symmetry, 15.","DOI":"10.3390\/sym15020439"},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1090\/S0002-9939-00-05371-5","article-title":"Jensen\u00eds operator inequality for functions of several variables","volume":"128","author":"Araki","year":"2000","journal-title":"Proc. Am. Math. Soc."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"520","DOI":"10.1090\/S0002-9947-1961-0136765-6","article-title":"On some classes of analytic functions of several variables","volume":"101","author":"Koranyi","year":"1961","journal-title":"Trans. Am. Math. Soc."},{"key":"ref_28","unstructured":"Guo, H. (2021). World Scientific."},{"key":"ref_29","first-page":"31","article-title":"An Inequality Improving the first Hermite\u2013Hadamard inequality for convex-functions defined on linear spaces and applications for semi-inner products","volume":"3","author":"Dragomir","year":"2002","journal-title":"J. Inequal. Pure Appl. Math."},{"key":"ref_30","first-page":"35","article-title":"An inequality improving the second Hermite\u2013Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products","volume":"3","author":"Dragomir","year":"2002","journal-title":"J. Inequal. Pure Appl. Math."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"417","DOI":"10.1017\/S000497270004051X","article-title":"Bounds for the normalized Jensen functional","volume":"74","author":"Dragomir","year":"2006","journal-title":"Bull. Austral. Math. Soc."},{"key":"ref_32","first-page":"349","article-title":"A note on Young\u00eds inequality, Revista de la Real Academia de Ciencias Exactas, F\u00ccsicas y Naturales","volume":"11","author":"Dragomir","year":"2017","journal-title":"Ser. A Mat."},{"key":"ref_33","unstructured":"Dragomir, S.S., Cerone, P., and Sofo, A. (2000). Some remarks on the trapezoid rule in numerical integration. Indian J. Pure Appl. Math., 3, Available online: https:\/\/core.ac.uk\/download\/pdf\/10835036.pdf."},{"key":"ref_34","unstructured":"Dragomir, S.S. (2023, January 02). An Ostrowski Type Tensorial Norm Inequality for Continuous Functions of Selfadjoint Operators in Hilbert Spaces, ResearchGate. November 2022. ResearchGate Preprint. Available online: https:\/\/www.researchgate.net\/profile\/S-Dragomir\/publication\/365656709_AN_OSTROWSKI_TYPE_TENSORIAL_NORM_INEQUALITY_FOR_CONTINUOUS_FUNCTIONS_OF_SELFADJOINT_OPERATORS_IN_HILBERT_SPACES\/links\/637d6dc41766b34c5449fc52\/AN-OSTROWSKI-TYPE-TENSORIAL-NORM-INEQUALITY-FOR-CONTINUOUS-FUNCTIONS-OF-SELFADJOINT-OPERATORS-IN-HILBERT-SPACES.pdf."},{"key":"ref_35","doi-asserted-by":"crossref","unstructured":"Dragomir, S.S. (2023, January 02). Refinements and Reverses Of Tensorial Hermite\u2013Hadamard Inequalities for Convex Functions of Selfadjoint Operators in Hilbert Spaces, ResearchGate, November 2022, ResearchGate Preprint. Available online: https:\/\/www.researchgate.net\/profile\/S-Dragomir\/publication\/363737336_REFINEMENTS_AND_REVERSES_OF_TENSORIAL_HERMITE-HADAMARD_INEQUALITIES_FOR_CONVEX_FUNCTIONS_OF_SELFADJOINT_OPERATORS_IN_HILBERT_SPACES\/links\/632bdbc670cc936cd327b539\/REFINEMENTS-AND-REVERSES-OF-TENSORIAL-HERMITE-HADAMARD-INEQUALITIES-FOR-CONVEX-FUNCTIONS-OF-SELFADJOINT-OPERATORS-IN-HILBERT-SPACES.pdf.","DOI":"10.33434\/cams.1362694"}],"container-title":["Symmetry"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2073-8994\/15\/4\/925\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,12,10]],"date-time":"2023-12-10T19:49:26Z","timestamp":1702237766000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2073-8994\/15\/4\/925"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,4,16]]},"references-count":35,"journal-issue":{"issue":"4","published-online":{"date-parts":[[2023,4]]}},"alternative-id":["sym15040925"],"URL":"https:\/\/doi.org\/10.3390\/sym15040925","relation":{},"ISSN":["2073-8994"],"issn-type":[{"value":"2073-8994","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,4,16]]}}}