iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.3390/S21062059
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,3]],"date-time":"2024-08-03T21:01:46Z","timestamp":1722718906537},"reference-count":27,"publisher":"MDPI AG","issue":"6","license":[{"start":{"date-parts":[[2021,3,15]],"date-time":"2021-03-15T00:00:00Z","timestamp":1615766400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/100010665","name":"H2020 Marie Sk\u0142odowska-Curie Actions","doi-asserted-by":"publisher","award":["675087"],"id":[{"id":"10.13039\/100010665","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"This paper presents a novel mechanism for fingerprint dynamic presentation attack detection. We utilize five spatio-temporal feature extractors to efficiently eliminate and mitigate different presentation attack species. The feature extractors are selected such that the fingerprint ridge\/valley pattern is consolidated with the temporal variations within the pattern in fingerprint videos. An SVM classification scheme, with a second degree polynomial kernel, is used in our presentation attack detection subsystem to classify bona fide and attack presentations. The experiment protocol and evaluation are conducted following the ISO\/IEC 30107-3:2017 standard. Our proposed approach demonstrates efficient capability of detecting presentation attacks with significantly low BPCER where BPCER is 1.11% for an optical sensor and 3.89% for a thermal sensor at 5% APCER for both.<\/jats:p>","DOI":"10.3390\/s21062059","type":"journal-article","created":{"date-parts":[[2021,3,16]],"date-time":"2021-03-16T02:16:54Z","timestamp":1615861014000},"page":"2059","source":"Crossref","is-referenced-by-count":8,"title":["Fingerprint Presentation Attack Detection Utilizing Spatio-Temporal Features"],"prefix":"10.3390","volume":"21","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-6327-5659","authenticated-orcid":false,"given":"Anas","family":"Husseis","sequence":"first","affiliation":[{"name":"University Group for ID Technologies (GUTI), University Carlos III of Madrid (UC3M), Av. de la Universidad 30, 28911 Madrid, Spain"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1938-0309","authenticated-orcid":false,"given":"Judith","family":"Liu-Jimenez","sequence":"additional","affiliation":[{"name":"University Group for ID Technologies (GUTI), University Carlos III of Madrid (UC3M), Av. de la Universidad 30, 28911 Madrid, Spain"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4239-985X","authenticated-orcid":false,"given":"Raul","family":"Sanchez-Reillo","sequence":"additional","affiliation":[{"name":"University Group for ID Technologies (GUTI), University Carlos III of Madrid (UC3M), Av. de la Universidad 30, 28911 Madrid, Spain"}]}],"member":"1968","published-online":{"date-parts":[[2021,3,15]]},"reference":[{"key":"ref_1","unstructured":"(2021, February 03). Future Smartphone Payments to Rely on Software Security. Available online: https:\/\/www.juniperresearch.com\/press\/press-releases\/future-smartphone-payments-rely-software-security."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"614","DOI":"10.1147\/sj.403.0614","article-title":"Enhancing security and privacy in biometrics-based authentication systems","volume":"40","author":"Ratha","year":"2001","journal-title":"IBM Syst. J."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"405","DOI":"10.1016\/j.scijus.2018.08.004","article-title":"Exposing latent fingermarks on problematic metal surfaces using time of flight secondary ion mass spectroscopy","volume":"58","author":"Thandauthapani","year":"2018","journal-title":"Sci. Justice"},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/2617756","article-title":"A Survey on Antispoofing Schemes for Fingerprint Recognition Systems","volume":"47","author":"Marasco","year":"2014","journal-title":"ACM Comput. Surv."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"95594","DOI":"10.1109\/ACCESS.2020.2995829","article-title":"Dynamic Fingerprint Statistics: Application in Presentation Attack Detection","volume":"8","author":"Husseis","year":"2020","journal-title":"IEEE Access"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"360","DOI":"10.1109\/TIFS.2006.879289","article-title":"Fake Finger Detection by Skin Distortion Analysis","volume":"1","author":"Antonelli","year":"2006","journal-title":"IEEE Trans. Inform. Forensics Secur."},{"key":"ref_7","doi-asserted-by":"crossref","unstructured":"Zhang, Y., Tian, J., Chen, X., Yang, X., and Shi, P. (2007). Fake Finger Detection Based on Thin-Plate Spline Distortion Model. Advances in Biometrics, Springer.","DOI":"10.1007\/978-3-540-74549-5_78"},{"key":"ref_8","doi-asserted-by":"crossref","unstructured":"Jia, J., Cai, L., Zhang, K., and Chen, D. (2007). A New Approach to Fake Finger Detection Based on Skin Elasticity Analysis. Advances in Biometrics, Springer.","DOI":"10.1007\/978-3-540-74549-5_33"},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"383","DOI":"10.1016\/S0031-3203(02)00038-9","article-title":"Determination of vitality from a non-invasive biomedical measurement for use in fingerprint scanners","volume":"36","author":"Derakhshani","year":"2003","journal-title":"Pattern Recognit."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"335","DOI":"10.1109\/TSMCC.2005.848192","article-title":"Time-Series Detection of Perspiration as a Liveness Test in Fingerprint Devices","volume":"35","author":"Parthasaradhi","year":"2005","journal-title":"IEEE Trans. Syst. Man Cybernet. Part C"},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"452","DOI":"10.1016\/j.patcog.2008.06.012","article-title":"Integrating a wavelet based perspiration liveness check with fingerprint recognition","volume":"42","author":"Abhyankar","year":"2009","journal-title":"Pattern Recognit."},{"key":"ref_12","doi-asserted-by":"crossref","unstructured":"Plesh, R., Bahmani, K., Jang, G., Yambay, D., Brownlee, K., Swyka, T., Johnson, P., Ross, A., and Schuckers, S. (2019, January 4\u20137). Fingerprint Presentation Attack Detection utilizing Time-Series, Color Fingerprint Captures. Proceedings of the 2019 International Conference on Biometrics, ICB 2019, Crete, Greece.","DOI":"10.1109\/ICB45273.2019.8987297"},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"219","DOI":"10.1049\/iet-bmt.2013.0020","article-title":"Presentation attack detection methods for fingerprint recognition systems: A survey","volume":"3","author":"Busch","year":"2014","journal-title":"IET Biom."},{"key":"ref_14","doi-asserted-by":"crossref","unstructured":"Husseis, A., Liu-Jimenez, J., Goicoechea-Telleria, I., and Sanchez-Reillo, R. (2019, January 1\u20133). A survey in presentation attack and presentation attack detection. Proceedings of the 2019 International Carnahan Conference on Security Technology (ICCST), Chennai, India.","DOI":"10.1109\/CCST.2019.8888436"},{"key":"ref_15","unstructured":"Nixon, M.S. (2019). Handbook of Biometric Anti-Spoofing, Springer."},{"key":"ref_16","unstructured":"Goicoechea Telleria, I. (2019). Evaluation of Presentation Attack Detection under the Context of Common Criteria. [Ph.D. Thesis, Universidad Carlos III de Madrid]."},{"key":"ref_17","unstructured":"Casula, R., Orr\u00f9, G., Angioni, D., Feng, X., Marcialis, G.L., and Roli, F. (2020). Are spoofs from latent fingerprints a real threat for the best state-of-art liveness detectors?. arXiv."},{"key":"ref_18","unstructured":"(2021, February 03). ISO\/IEC 30107-3:2017\u2014Information Technology\u2014Biometric Presentation Attack Detection\u2014Part 3: Testing and Reporting. Available online: https:\/\/www.iso.org\/standard\/67381.html."},{"key":"ref_19","unstructured":"Szummer, M., and Picard, R.W. (1996, January 19). Temporal texture modeling. Proceedings of the IEEE International Conference on Image Processing, IEEE, Lausanne, Switzerland."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"915","DOI":"10.1109\/TPAMI.2007.1110","article-title":"Dynamic texture recognition using local binary patterns with an application to facial expressions","volume":"29","author":"Zhao","year":"2007","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"184537","DOI":"10.1109\/ACCESS.2019.2960629","article-title":"Recognizing spontaneous micro-expression using a three-stream convolutional neural network","volume":"7","author":"Song","year":"2019","journal-title":"IEEE Access"},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"552","DOI":"10.1109\/TMM.2017.2750415","article-title":"Dynamic Texture Recognition Using Volume Local Binary Count Patterns with an Application to 2D Face Spoofing Detection","volume":"20","author":"Zhao","year":"2018","journal-title":"IEEE Trans. Multimed."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"1473","DOI":"10.1007\/s00138-012-0449-x","article-title":"Classifying web videos using a global video descriptor","volume":"24","author":"Solmaz","year":"2013","journal-title":"Mach. Vis. Appl."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"1846","DOI":"10.1109\/ICASSP.2016.7471996","article-title":"Spatio-temporal mid-level feature bank for action recognition in low quality video","volume":"Volume 2016 May","author":"Rahman","year":"2016","journal-title":"Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)"},{"key":"ref_25","first-page":"360","article-title":"Volume local phase quantization for blur-insensitive dynamic texture classification","volume":"Volume 6688 LNCS","author":"Rahtu","year":"2011","journal-title":"Lecture Notes in Computer Science"},{"key":"ref_26","doi-asserted-by":"crossref","unstructured":"Ojansivu, V., and Heikkil\u00e4, J. (2008). Blur Insensitive Texture Classification Using Local Phase Quantization, Springer.","DOI":"10.1007\/978-3-540-69905-7_27"},{"key":"ref_27","doi-asserted-by":"crossref","unstructured":"Martin, A., Doddington, G., Kamm, T., Ordowski, M., and Przybocki, M. (1997, January 22\u201325). The DET curve in assessment of detection task performance. Proceedings of the European Conference on Speech Communication and Technology, Rhodes, Greece.","DOI":"10.21437\/Eurospeech.1997-504"}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/21\/6\/2059\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,9]],"date-time":"2024-07-09T17:11:41Z","timestamp":1720545101000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/21\/6\/2059"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,3,15]]},"references-count":27,"journal-issue":{"issue":"6","published-online":{"date-parts":[[2021,3]]}},"alternative-id":["s21062059"],"URL":"https:\/\/doi.org\/10.3390\/s21062059","relation":{},"ISSN":["1424-8220"],"issn-type":[{"value":"1424-8220","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,3,15]]}}}