iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.3390/S20226702
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,7]],"date-time":"2024-09-07T07:53:09Z","timestamp":1725695589018},"reference-count":26,"publisher":"MDPI AG","issue":"22","license":[{"start":{"date-parts":[[2020,11,23]],"date-time":"2020-11-23T00:00:00Z","timestamp":1606089600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"We introduce SodSAR, a fully polarimetric tower-based wide frequency (1\u201310 GHz) range Synthetic Aperture Radar (SAR) aimed at snow, soil and vegetation studies. The instrument is located in the Arctic Space Centre of the Finnish Meteorological Institute in Sodankyl\u00e4, Finland. The system is based on a Vector Network Analyzer (VNA)-operated scatterometer mounted on a rail allowing the formation of SAR images, including interferometric pairs separated by a temporal baseline. We present the description of the radar, the applied SAR focusing technique, the radar calibration and measurement stability analysis. Measured stability of the backscattering intensity over a three-month period was observed to be better than 0.5 dB, when measuring a target with a known radar cross section. Deviations of the estimated target range were in the order of a few cm over the same period, indicating also good stability of the measured phase. Interforometric SAR (InSAR) capabilities are also discussed, and as a example, the coherence of subsequent SAR acquisitions over the observed boreal forest stand are analyzed over increasing temporal baselines. The analysis shows good conservation of coherence in particular at L-band, while higher frequencies are susceptible to loss of coherence in particular for dense vegetation. The potential of the instrument for satellite calibration and validation activities is also discussed.<\/jats:p>","DOI":"10.3390\/s20226702","type":"journal-article","created":{"date-parts":[[2020,11,23]],"date-time":"2020-11-23T16:50:34Z","timestamp":1606150234000},"page":"6702","source":"Crossref","is-referenced-by-count":8,"title":["SodSAR: A Tower-Based 1\u201310 GHz SAR System for Snow, Soil and Vegetation Studies"],"prefix":"10.3390","volume":"20","author":[{"given":"Jorge","family":"Jorge Ruiz","sequence":"first","affiliation":[{"name":"Finnish Meteorological Institute, Erik Palm\u00e9nin Aukio 1, 00560 Helsinki, Finland"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4825-9217","authenticated-orcid":false,"given":"Risto","family":"Vehmas","sequence":"additional","affiliation":[{"name":"Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR, Fraunhoferstra\u00dfe 20, 53343 Wachtberg, Germany"}]},{"given":"Juha","family":"Lemmetyinen","sequence":"additional","affiliation":[{"name":"Finnish Meteorological Institute, Erik Palm\u00e9nin Aukio 1, 00560 Helsinki, Finland"}]},{"given":"Josu","family":"Uusitalo","sequence":"additional","affiliation":[{"name":"Harp Technologies Ltd., Tekniikantie 14, 02150 Espoo, Finland"}]},{"given":"Janne","family":"Lahtinen","sequence":"additional","affiliation":[{"name":"Harp Technologies Ltd., Tekniikantie 14, 02150 Espoo, Finland"}]},{"given":"Kari","family":"Lehtinen","sequence":"additional","affiliation":[{"name":"Harp Technologies Ltd., Tekniikantie 14, 02150 Espoo, Finland"}]},{"given":"Anna","family":"Kontu","sequence":"additional","affiliation":[{"name":"Finnish Meteorological Institute, Erik Palm\u00e9nin Aukio 1, 00560 Helsinki, Finland"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0321-578X","authenticated-orcid":false,"given":"Kimmo","family":"Rautiainen","sequence":"additional","affiliation":[{"name":"Finnish Meteorological Institute, Erik Palm\u00e9nin Aukio 1, 00560 Helsinki, Finland"}]},{"given":"Riku","family":"Tarvainen","sequence":"additional","affiliation":[{"name":"Finnish Meteorological Institute, Erik Palm\u00e9nin Aukio 1, 00560 Helsinki, Finland"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1157-2920","authenticated-orcid":false,"given":"Jouni","family":"Pulliainen","sequence":"additional","affiliation":[{"name":"Finnish Meteorological Institute, Erik Palm\u00e9nin Aukio 1, 00560 Helsinki, Finland"}]},{"given":"Jaan","family":"Praks","sequence":"additional","affiliation":[{"name":"Department of Electronics and Nanoengineering, Aalto University, Maarintie 8, 02150 Espoo, Finland"}]}],"member":"1968","published-online":{"date-parts":[[2020,11,23]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"384","DOI":"10.1016\/j.rse.2004.09.011","article-title":"Seasat\u2014A 25-year legacy of success","volume":"94","author":"Evans","year":"2005","journal-title":"Remote Sens. Environ."},{"key":"ref_2","unstructured":"Davidson, M., Snoeij, P., Attema, E., Rommen, B., Floury, N., Levrini, G., and Duesmann, B. (2009, January 12\u201317). Sentinel-1 Mission Overview. Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"829","DOI":"10.1080\/07038992.2019.1704621","article-title":"Sensitivity of Ku- and X-Band Radar Observations to Seasonal Snow in Ontario, Canada","volume":"45","author":"Thompson","year":"2019","journal-title":"Can. J. Remote Sens."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"4418","DOI":"10.1109\/JSTARS.2015.2469290","article-title":"Modeling Both Active and Passive Microwave Remote Sensing of Snow Using Dense Media Radiative Transfer (DMRT) Theory With Multiple Scattering and Backscattering Enhancement","volume":"8","author":"Tan","year":"2015","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_5","doi-asserted-by":"crossref","unstructured":"King, J., Derksen, C., and Toose, P. (2017, January 23\u201328). Exploring the influence of snow microstructure on dual-frequency radar measurements. Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA.","DOI":"10.1109\/IGARSS.2017.8127213"},{"key":"ref_6","doi-asserted-by":"crossref","unstructured":"Lemmetyinen, J., Derksen, C., Rott, H., Macelloni, G., King, J., Schneebeli, M., Wiesmann, A., Lepp\u00e4nen, L., Kontu, A., and Pulliainen, J. (2018). Retrieval of Effective Correlation Length and Snow Water Equivalent from Radar and Passive Microwave Measurements. Remote Sens., 10.","DOI":"10.3390\/rs10020170"},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"3564","DOI":"10.1109\/JSTARS.2018.2814825","article-title":"Temporal Survey of P- and L-Band Polarimetric Backscatter in Boreal Forests","volume":"11","author":"Monteith","year":"2018","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"1803","DOI":"10.1109\/TGRS.2004.832248","article-title":"Development of a ground-based polarimetric broadband SAR system for noninvasive ground-truth validation in vegetation monitoring","volume":"42","author":"Zhou","year":"2004","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_9","doi-asserted-by":"crossref","unstructured":"Gromek, A. (2014, January 16\u201318). High resolution SAR imaging trials using a handheld vector network analyzer. Proceedings of the 2014 15th International Radar Symposium (IRS), Gdansk, Poland.","DOI":"10.1109\/IRS.2014.6869312"},{"key":"ref_10","doi-asserted-by":"crossref","unstructured":"Werner, C., Wiesmann, A., Strozzi, T., Schneebeli, M., and M\u00e4tzler, C. (2010, January 25\u201330). The SnowScat ground-based polarimetric scatterometer: Calibration and initial measurements from Davos Switzerland. Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA.","DOI":"10.1109\/IGARSS.2010.5649015"},{"key":"ref_11","doi-asserted-by":"crossref","unstructured":"Lemmetyinen, J., Kontu, A., Lepp\u00e4nen, L., Vehvil\u00e4inen, J., Vehmas, R., Li, Q., Rautiainen, K., and Pulliainen, J. (2018, January 22\u201327). Season-Length Observations of Active and Passive Microwave Signatures of Snow Cover in a Boreal Forest Environment. Proceedings of the IGARSS 2018\u20142018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain.","DOI":"10.1109\/IGARSS.2018.8517328"},{"key":"ref_12","doi-asserted-by":"crossref","unstructured":"Frey, O., Werner, C.L., and Wiesmann, A. (2015, January 9\u201311). Tomographic profiling of the structure of a snow pack at X-\/Ku-Band using SnowScat in SAR mode. Proceedings of the 2015 European Radar Conference (EuRAD), Paris, France.","DOI":"10.1109\/EuRAD.2015.7346227"},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"3773","DOI":"10.1109\/JSTARS.2015.2432031","article-title":"Snow Water Equivalent of Dry Snow Measured by Differential Interferometry","volume":"8","author":"Leinss","year":"2015","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"1897","DOI":"10.1109\/LGRS.2018.2865673","article-title":"Multiport Vector Network Analyzer Radar for Tomographic Forest Scattering Measurements","volume":"15","author":"Ulander","year":"2018","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"1060","DOI":"10.1109\/JSTARS.2012.2201917","article-title":"TropiSCAT: A Ground Based Polarimetric Scatterometer Experiment in Tropical Forests","volume":"5","author":"Albinet","year":"2012","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"928","DOI":"10.1109\/LGRS.2019.2937382","article-title":"Temporal Decorrelation of Tropical Dense Forest at C-Band: First Insights From the TropiScat-2 Experiment","volume":"17","author":"Villard","year":"2020","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_17","doi-asserted-by":"crossref","unstructured":"Albinet, C., Koleck, T., Le Toan, T., Borderies, P., Villard, L., Hamadi, A., Laurin, G.V., Nicolini, G., and Valentini, R. (2015, January 26\u201331). First results of AfriScat, a tower-based radar experiment in African forest. Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy.","DOI":"10.1109\/IGARSS.2015.7327045"},{"key":"ref_18","doi-asserted-by":"crossref","unstructured":"Repola, J. (2009). Biomass Equations for Scots Pine and Norway Spruce in Finland. Silva Fenn., 43.","DOI":"10.14214\/sf.184"},{"key":"ref_19","doi-asserted-by":"crossref","unstructured":"Jylh\u00e4, J., V\u00e4il\u00e4, M., Per\u00e4l\u00e4, H., V\u00e4is\u00e4nen, V., Visa, A., Vehmas, R., Kylm\u00e4l\u00e4, J., and Salminen, V. (2014, January 8\u201310). On SAR processing using pixel-wise matched kernels. Proceedings of the 2014 11th European Radar Conference, Rome, Italy.","DOI":"10.1109\/EuRAD.2014.6991216"},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"1107","DOI":"10.1109\/36.193786","article-title":"SAR calibration: An overview","volume":"30","author":"Freeman","year":"1992","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"697","DOI":"10.1109\/36.7697","article-title":"Calibration of a cross-polarized SAR image using dihedral corner reflectors","volume":"26","author":"Hirosawa","year":"1988","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"2953","DOI":"10.1109\/TGRS.2010.2043738","article-title":"On the Role of Phase Stability in SAR Multibaseline Applications","volume":"48","author":"Tebaldini","year":"2010","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"601","DOI":"10.1109\/36.581975","article-title":"The use of ERS-1 SAR data in snow melt monitoring","volume":"35","author":"Koskinen","year":"1997","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"156","DOI":"10.1109\/LGRS.2009.2029126","article-title":"InSAR Coherence-Decomposition Analysis","volume":"7","author":"Wang","year":"2010","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"2101","DOI":"10.1109\/36.957273","article-title":"InSAR for estimation of changes in snow water equivalent of dry snow","volume":"39","author":"Guneriussen","year":"2001","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_26","doi-asserted-by":"crossref","unstructured":"Olesk, A., Praks, J., Antropov, O., Zalite, K., Arumae, T., and Voormansik, K. (2016). Interferometric SAR Coherence Models for Characterization of Hemiboreal Forests Using TanDEM-X Data. Remote Sens., 8.","DOI":"10.3390\/rs8090700"}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/20\/22\/6702\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,5]],"date-time":"2024-07-05T18:55:13Z","timestamp":1720205713000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/20\/22\/6702"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,11,23]]},"references-count":26,"journal-issue":{"issue":"22","published-online":{"date-parts":[[2020,11]]}},"alternative-id":["s20226702"],"URL":"http:\/\/dx.doi.org\/10.3390\/s20226702","relation":{},"ISSN":["1424-8220"],"issn-type":[{"value":"1424-8220","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,11,23]]}}}