iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.3390/RS14132990
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:26:27Z","timestamp":1722471987973},"reference-count":81,"publisher":"MDPI AG","issue":"13","license":[{"start":{"date-parts":[[2022,6,22]],"date-time":"2022-06-22T00:00:00Z","timestamp":1655856000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["42004060","42130809"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002367","name":"Chinese Academy of Sciences","doi-asserted-by":"publisher","award":["2020-DX03-B-007"],"id":[{"id":"10.13039\/501100002367","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"The initiation and evolution of seismic activity in intraplate regions are controlled by heterogeneous stress and highly fractured rocks within the rock mass triggered by fluid migration. In this study, we imaged the electrical structure of the crust beneath the Ganzi fault using a three-dimensional magnetotelluric inversion technique, which is host to an assemblage of resistive and conductive features extending into the lower crust. It presents a near-vertical low-resistance zone that cuts through the brittle ductile transition zone, extends to the lower crust, and acts as a pathway for fluid migration from the crustal flow to the upper crustal depths. Conductors in the upper and lower crust are associated with saline fluids and 7% to 16% partial melting, respectively. The relationship between the earthquake epicenter and the surrounding electrical structure suggests that the intraplate seismicity is triggered by overpressure fluids, which are dependent on fluid volume changes generated by the decompression dehydration of partially molten material during upwelling and native fluid within the crustal flow.<\/jats:p>","DOI":"10.3390\/rs14132990","type":"journal-article","created":{"date-parts":[[2022,6,23]],"date-time":"2022-06-23T03:11:19Z","timestamp":1655953879000},"page":"2990","source":"Crossref","is-referenced-by-count":1,"title":["Crustal Electrical Structure of the Ganzi Fault on the Eastern Tibetan Plateau: Implications for the Role of Fluids in Earthquakes"],"prefix":"10.3390","volume":"14","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-5949-5587","authenticated-orcid":false,"given":"Yuanzhi","family":"Cheng","sequence":"first","affiliation":[{"name":"Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6414-6266","authenticated-orcid":false,"given":"Yanlong","family":"Kong","sequence":"additional","affiliation":[{"name":"Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China"}]},{"given":"Zhongxing","family":"Wang","sequence":"additional","affiliation":[{"name":"CAS Engineering Laboratory for Deep Resources Equipment and Technology, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China"}]},{"given":"Yonghui","family":"Huang","sequence":"additional","affiliation":[{"name":"College of Geosciences, China University of Petroleum, Beijing 102249, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3623-8304","authenticated-orcid":false,"given":"Xiangyun","family":"Hu","sequence":"additional","affiliation":[{"name":"Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China"}]}],"member":"1968","published-online":{"date-parts":[[2022,6,22]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"419","DOI":"10.1126\/science.189.4201.419","article-title":"Cenozoic Tectonics of Asia: Effects of a Continental Collision","volume":"189","author":"Molnar","year":"1975","journal-title":"Science"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"1671","DOI":"10.1126\/science.105978","article-title":"Oblique Stepwise Rise and Growth of the Tibet Plateau","volume":"294","author":"Tapponnier","year":"2001","journal-title":"Science"},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1146\/annurev.earth.28.1.211","article-title":"Geologic Evolution of the Himalayan-Tibetan Orogen","volume":"28","author":"Yin","year":"2000","journal-title":"Annu. Rev. Earth Planet. Sci."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"4987","DOI":"10.1073\/pnas.0703595105","article-title":"Constraints on the Early Uplift History of the Tibetan Plateau","volume":"105","author":"Wang","year":"2008","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"ref_5","doi-asserted-by":"crossref","unstructured":"Wang, E., Burchfiel, B.C., Royden, L.H., Liangzhong, C., Jishen, C., Wenxin, L., and Zhiliang, C. (1998). Late Cenozoic Xianshuihe-Xiaojiang, Red River, and Dali Fault Systems of Southwestern Sichuan and Central Yunnan, China, Geological Society of America.","DOI":"10.1130\/SPE327"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"413","DOI":"10.1130\/0016-7606(2000)112<413:LCTHDI>2.0.CO;2","article-title":"Late Cenozoic to Holocene Deformation in Southwestern Sichuan and Adjacent Yunnan, China, and Its Role in Formation of the Southeastern Part of the Tibetan Plateau","volume":"112","author":"Wang","year":"2000","journal-title":"Bull. Geol. Soc. Am."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1029\/2006TC002014","article-title":"Late Quaternary and Present-Day Rates of Slip along the Altyn Tagh Fault, Northern Margin of the Tibetan Plateau","volume":"26","author":"Zhang","year":"2007","journal-title":"Tectonics"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"1178","DOI":"10.1130\/0016-7606(1991)103<1178:FSOAHA>2.3.CO;2","article-title":"Field Study of a Highly Active Fault Zone: The Xianshuihe Fault of Southwestern China","volume":"103","author":"Allen","year":"1991","journal-title":"Bull. Geol. Soc. Am."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"312","DOI":"10.1130\/B25833.1","article-title":"Late Cenozoic Deformation along the Northwestern Continuation of the Xianshuihe Fault System, Eastern Tibetan Plateau","volume":"120","author":"Wang","year":"2008","journal-title":"Bull. Geol. Soc. Am."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"396","DOI":"10.1130\/B31691.1","article-title":"Temporally Constant Slip Rate along the Ganzi Fault, NW Xianshuihe Fault System, Eastern Tibet","volume":"130","author":"Chevalier","year":"2017","journal-title":"Bull. Geol. Soc. Am."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"809","DOI":"10.1130\/G20554.1","article-title":"Continuous Deformation of the Tibetan Plateau from Global Positioning System Data","volume":"32","author":"Zhang","year":"2004","journal-title":"Geology"},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"B08416","DOI":"10.1029\/2005JB004120","article-title":"Present-Day Crustal Motion within the Tibetan Plateau Inferred from GPS Measurements","volume":"112","author":"Gan","year":"2007","journal-title":"J. Geophys. Res. Solid Earth"},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"5722","DOI":"10.1002\/2013JB010503","article-title":"Three-Dimensional Velocity Field of Present-Day Crustal Motion of the Tibetan Plateau Derived from GPS Measurements","volume":"118","author":"Liang","year":"2013","journal-title":"J. Geophys. Res. Solid Earth"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"611","DOI":"10.1130\/0091-7613(1982)10<611:PETIAN>2.0.CO;2","article-title":"Propagating Extrusion Tectonics in Asia: New Insights from Simple Experiments with Plasticine","volume":"10","author":"Tapponnier","year":"1982","journal-title":"Geology"},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"788","DOI":"10.1126\/science.276.5313.788","article-title":"Surface Deformation and Lower Crust Flow in Eastern Tibet","volume":"276","author":"Royden","year":"1997","journal-title":"Science"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"703","DOI":"10.1130\/0091-7613(2000)28<703:TOBTEM>2.0.CO;2","article-title":"Topographic Ooze: Building the Eastern Margin of Tibet by Lower Crustal Flow","volume":"28","author":"Clark","year":"2000","journal-title":"Geology"},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"276","DOI":"10.1360\/03dz0022","article-title":"Average Slip-Rate and Recent Large Earthquake Ruptures along the Garz\u00ea-Yushu Fault","volume":"46","author":"Wen","year":"2003","journal-title":"Sci. China Ser. D Earth Sci."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1007\/s11430-012-4540-y","article-title":"Recurrence of Paleoearthquakes on the Southeastern Segment of the Ganzi-Yushu Fault, Central Tibetan Plateau","volume":"56","author":"Li","year":"2013","journal-title":"Sci. China Earth Sci."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1016\/j.tecto.2015.03.026","article-title":"Late Quaternary Slip Rate of the Batang Fault and Its Strain Partitioning Role in Yushu Area, Central Tibet","volume":"653","author":"Huang","year":"2015","journal-title":"Tectonophysics"},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"112","DOI":"10.1016\/j.tecto.2016.03.036","article-title":"Active Tectonics of the Ganzi-Yushu Fault in the Southeastern Tibetan Plateau","volume":"676","author":"Shi","year":"2016","journal-title":"Tectonophysics"},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"3504","DOI":"10.1007\/s11434-010-4079-2","article-title":"The MS7.1 Yushu Earthquake Surface Rupture and Large Historical Earthquakes on the Garz\u00ea-Yushu Fault","volume":"55","author":"Chen","year":"2010","journal-title":"Chinese Sci. Bull."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1016\/j.epsl.2013.06.044","article-title":"Coulomb Stress Evolution along Xianshuihe-Xiaojiang Fault System since 1713 and Its Interaction with Wenchuan Earthquake, May 12, 2008","volume":"377\u2013378","author":"Shan","year":"2013","journal-title":"Earth Planet. Sci. Lett."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"1121","DOI":"10.1080\/00206810902945132","article-title":"Initiation of Slip along the Xianshuihe Fault Zone, Eastern Tibet, Constrained by K\/Ar and Fission-Track Ages","volume":"51","author":"Wang","year":"2009","journal-title":"Int. Geol. Rev."},{"key":"ref_24","doi-asserted-by":"crossref","unstructured":"Chave, A.D., and Jones, A.G. (2012). The Magnetotelluric Method: Theory and Practice, Cambridge University Press.","DOI":"10.1017\/CBO9781139020138"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"ETG 6-1","DOI":"10.1029\/2001JB000186","article-title":"Fluid Generation and Pathways beneath an Active Compressional Orogen, the New Zealand Southern Alps, Inferred from Magnetotelluric Data","volume":"107","author":"Wannamaker","year":"2002","journal-title":"J. Geophys. Res."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"733","DOI":"10.1038\/nature08204","article-title":"Fluid and Deformation Regime of an Advancing Subduction System at Marlborough, New Zealand","volume":"460","author":"Wannamaker","year":"2009","journal-title":"Nature"},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/1880-5981-66-1","article-title":"Three-Dimensional Magnetotelluric Imaging of Crustal Fluids and Seismicity around Naruko Volcano, NE Japan","volume":"66","author":"Ogawa","year":"2014","journal-title":"Earth Planets Sp."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1038\/nature10609","article-title":"Correlation between Deep Fluids, Tremor and Creep along the Central San Andreas Fault","volume":"480","author":"Becken","year":"2011","journal-title":"Nature"},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"78","DOI":"10.1038\/nature04154","article-title":"Crustal Rheology of the Himalaya and Southern Tibet Inferred from Magnetotelluric Data","volume":"438","author":"Unsworth","year":"2005","journal-title":"Nature"},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"1275","DOI":"10.1002\/2016GL071855","article-title":"Rupture Mechanism and Seismotectonics of the Ms6.5 Ludian Earthquake Inferred from Three-Dimensional Magnetotelluric Imaging","volume":"44","author":"Cai","year":"2017","journal-title":"Geophys. Res. Lett."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"1139","DOI":"10.1130\/G33703.1","article-title":"Crustal Structure and Rheology of the Longmenshan and Wenchuan Mw 7.9 Earthquake Epicentral Area from Magnetotelluric Data","volume":"40","author":"Zhao","year":"2012","journal-title":"Geology"},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1007\/s10712-011-9122-6","article-title":"Three-Dimensional Magnetotelluric Inversion: An Introductory Guide for Developers and Users","volume":"33","author":"Siripunvaraporn","year":"2012","journal-title":"Surv. Geophys."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"2","DOI":"10.1186\/s40623-019-1125-4","article-title":"Quality over Quantity: On Workflow and Model Space Exploration of 3D Inversion of MT Data","volume":"72","author":"Robertson","year":"2020","journal-title":"Earth Planets Sp."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"1609","DOI":"10.1093\/gji\/ggw359","article-title":"Crustal Metamorphic Fluid Flux beneath the Dead Sea Basin: Constraints from 2-D and 3-D Magnetotelluric Modelling","volume":"207","author":"Meqbel","year":"2016","journal-title":"Geophys. J. Int."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"251","DOI":"10.1111\/j.1365-246X.2011.05347.x","article-title":"Computational Recipes for Electromagnetic Inverse Problems","volume":"189","author":"Egbert","year":"2012","journal-title":"Geophys. J. Int."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"804","DOI":"10.1111\/j.1365-246X.2005.02527.x","article-title":"Interpretation of Two-Dimensional Magnetotelluric Profile Data with Three-Dimensional Inversion: Synthetic Examples","volume":"160","author":"Siripunvaraporn","year":"2005","journal-title":"Geophys. J. Int."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"116493","DOI":"10.1016\/j.epsl.2020.116493","article-title":"A Plume-Modified Lithospheric Barrier to the Southeastward Flow of Partially Molten Tibetan Crust Inferred from Magnetotelluric Data","volume":"548","author":"Li","year":"2020","journal-title":"Earth Planet. Sci. Lett."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"e2020JB019396","DOI":"10.1029\/2020JB019396","article-title":"New Insights Into Crustal and Mantle Flow Beneath the Red River Fault Zone and Adjacent Areas on the Southern Margin of the Tibetan Plateau Revealed by a 3-D Magnetotelluric Study","volume":"125","author":"Yu","year":"2020","journal-title":"J. Geophys. Res. Solid Earth"},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"e2021JB022923","DOI":"10.1029\/2021JB022923","article-title":"The Influence of the Ailaoshan-Red River Shear Zone on the Mineralization of the Beiya Deposit on the Southeastern Margin of the Tibetan Plateau Revealed by a 3-D Magnetotelluric Survey","volume":"127","author":"Yu","year":"2022","journal-title":"J. Geophys. Res. Solid Earth"},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1016\/j.tecto.2013.09.011","article-title":"Crust and Upper Mantle Resistivity Structure at Middle Section of Longmenshan, Eastern Tibetan Plateau","volume":"619\u2013620","author":"Wang","year":"2014","journal-title":"Tectonophysics"},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1029\/2018JB015936","article-title":"Magma Chamber and Crustal Channel Flow Structures in the Tengchong Volcano Area From 3-D MT Inversion at the Intracontinental Block Boundary Southeast of the Tibetan Plateau","volume":"123","author":"Ye","year":"2018","journal-title":"J. Geophys. Res. Solid Earth"},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"e2019JB018991","DOI":"10.1029\/2019JB018991","article-title":"Bifurcated Crustal Channel Flow and Seismogenic Structures of Intraplate Earthquakes in Western Yunnan, China as Revealed by Three-Dimensional Magnetotelluric Imaging","volume":"125","author":"Ye","year":"2020","journal-title":"J. Geophys. Res. Solid Earth"},{"key":"ref_43","first-page":"3965","article-title":"Electrical Structure and Seismogenic Environment along the Border Region of Yunnan, Sichuan and Guizhou in the South of the North-South Seismic Belt","volume":"58","author":"Cheng","year":"2015","journal-title":"Chin. J. Geophys."},{"key":"ref_44","first-page":"2425","article-title":"Deep Electrical Structure beneath the Sichuan-Yunnan Area in the Eastern Margin of the Tibetan Plateau","volume":"60","author":"Cheng","year":"2017","journal-title":"Chinese J. Geophys."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1016\/j.jseaes.2019.01.031","article-title":"Electrical Resistivity Structure of the Xiaojiang Strike-Slip Fault System (SW China) and Its Tectonic Implications","volume":"176","author":"Li","year":"2019","journal-title":"J. Asian Earth Sci."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"358","DOI":"10.1038\/ngeo830","article-title":"Crustal Deformation of the Eastern Tibetan Plateau Revealed by Magnetotelluric Imaging","volume":"3","author":"Bai","year":"2010","journal-title":"Nat. Geosci."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"103501","DOI":"10.1016\/j.oregeorev.2020.103501","article-title":"Magnetotelluric Exploration of Deep-Seated Gold Deposits in the Qingchengzi Orefield, Eastern Liaoning (China), Using a SEP System","volume":"122","author":"Di","year":"2020","journal-title":"Ore Geol. Rev."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1190\/1.1440923","article-title":"Magnetotellurics with a Remote Magnetic Reference","volume":"44","author":"Gamble","year":"1979","journal-title":"Geophysics"},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"14201","DOI":"10.1029\/JB094iB10p14201","article-title":"A Comparison of Techniques for Magnetotelluric Response Function Estimation","volume":"94","author":"Jones","year":"1989","journal-title":"J. Geophys. Res. Solid Earth"},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"457","DOI":"10.1111\/j.1365-246X.2004.02281.x","article-title":"The Magnetotelluric Phase Tensor","volume":"158","author":"Caldwell","year":"2004","journal-title":"Geophys. J. Int."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1016\/j.epsl.2015.10.003","article-title":"Structure of the Tongariro Volcanic System: Insights from Magnetotelluric Imaging","volume":"432","author":"Hill","year":"2015","journal-title":"Earth Planet. Sci. Lett."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"255","DOI":"10.1111\/j.1365-246X.2012.05523.x","article-title":"Hybrid Conjugate Gradient-Occam Algorithms for Inversion of Multifrequency and Multitransmitter EM Data","volume":"190","author":"Egbert","year":"2012","journal-title":"Geophys. J. Int."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"40","DOI":"10.1016\/j.cageo.2014.01.010","article-title":"ModEM: A Modular System for Inversion of Electromagnetic Geophysical Data","volume":"66","author":"Kelbert","year":"2014","journal-title":"Comput. Geosci."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"e2021JB022585","DOI":"10.1029\/2021JB022585","article-title":"Magnetotelluric Evidence for Distributed Lithospheric Modification Beneath the Yinchuan-Jilantai Rift System and Its Implications for Late Cenozoic Rifting in Western North China","volume":"127","author":"Li","year":"2022","journal-title":"J. Geophys. Res. Solid Earth"},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"130","DOI":"10.1093\/gji\/ggt234","article-title":"Three-Dimensional Magnetotelluric Inversion in Practice-the Electrical Conductivity Structure of the San Andreas Fault in Central California","volume":"195","author":"Tietze","year":"2013","journal-title":"Geophys. J. Int."},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"361","DOI":"10.1038\/ngeo2130","article-title":"Eastward Expansion of the Tibetan Plateau by Crustal Flow and Strain Partitioning across Faults","volume":"7","author":"Liu","year":"2014","journal-title":"Nat. Geosci."},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1016\/S0024-4937(99)00022-5","article-title":"Imaging the Continental Upper Mantle Using Electromagnetic Methods","volume":"48","author":"Jones","year":"1999","journal-title":"Lithos"},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1016\/j.epsl.2013.11.024","article-title":"Water Content of the Tanzanian Lithosphere from Magnetotelluric Data: Implications for Cratonic Growth and Stability","volume":"388","author":"Selway","year":"2014","journal-title":"Earth Planet. Sci. Lett."},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"697","DOI":"10.1016\/j.jseaes.2012.11.020","article-title":"3D Thermal Structure of the Continental Lithosphere beneath China and Adjacent Regions","volume":"62","author":"Sun","year":"2013","journal-title":"J. Asian Earth Sci."},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"397","DOI":"10.1007\/BF01575618","article-title":"Experimental Study of a Biotite-Bearing Granitic System under Water-Saturated and Water-Undersaturated Conditions","volume":"104","author":"Puziewicz","year":"1990","journal-title":"Contrib. Mineral. Petrol."},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"1177","DOI":"10.1186\/BF03353337","article-title":"On the Geoelectric Structure of Major Strike-Slip Faults and Shear Zones","volume":"56","author":"Unsworth","year":"2004","journal-title":"Earth Planets Sp."},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1029\/2020JB019731","article-title":"3-D Magnetotelluric Imaging of the Easternmost Kunlun Fault: Insights Into Strain Partitioning and the Seismotectonics of the Jiuzhaigou Ms7.0 Earthquake","volume":"125","author":"Sun","year":"2020","journal-title":"J. Geophys. Res. Solid Earth"},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"36","DOI":"10.1016\/j.tecto.2019.01.006","article-title":"Terrestrial Heat Flow of Continental China: Updated Dataset and Tectonic Implications","volume":"753","author":"Jiang","year":"2019","journal-title":"Tectonophysics"},{"key":"ref_64","doi-asserted-by":"crossref","first-page":"113","DOI":"10.1016\/j.epsl.2013.09.038","article-title":"Crustal Flow Pattern beneath the Tibetan Plateau Constrained by Regional Lg-Wave Q Tomography","volume":"383","author":"Zhao","year":"2013","journal-title":"Earth Planet. Sci. Lett."},{"key":"ref_65","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1016\/0012-821X(94)00252-T","article-title":"Miocene Emplacement and Deformation of the Konga Shan Granite (Xianshui He Fault Zone, West Sichuan, China): Geodynamic Implications","volume":"130","author":"Roger","year":"1995","journal-title":"Earth Planet. Sci. Lett."},{"key":"ref_66","doi-asserted-by":"crossref","first-page":"801","DOI":"10.1130\/G20577.1","article-title":"Evidence for Present-Day Leucogranite Pluton Growth in Tibet","volume":"32","author":"Gaillard","year":"2004","journal-title":"Geology"},{"key":"ref_67","doi-asserted-by":"crossref","first-page":"3515","DOI":"10.1038\/s41467-018-05934-7","article-title":"Melting Conditions in the Modern Tibetan Crust since the Miocene","volume":"9","author":"Chen","year":"2018","journal-title":"Nat. Commun."},{"key":"ref_68","doi-asserted-by":"crossref","first-page":"369","DOI":"10.1016\/S0012-821X(00)00168-0","article-title":"A Modified Archie\u2019s Law for Two Conducting Phases","volume":"180","author":"Glover","year":"2000","journal-title":"Earth Planet. Sci. Lett."},{"key":"ref_69","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1046\/j.1365-246X.2003.01850.x","article-title":"Partial Melt or Aqueous Fluid in the Mid-Crust of Southern Tibet? Constraints from INDEPTH Magnetotelluric Data","volume":"153","author":"Li","year":"2003","journal-title":"Geophys. J. Int."},{"key":"ref_70","doi-asserted-by":"crossref","unstructured":"Enkelmann, E., Weislogel, A., Ratschbacher, L., Eide, E., Renno, A., and Wooden, J. (2007). How Was the Triassic Songpan-Ganzi Basin Filled? A Provenance Study. Tectonics, 26.","DOI":"10.1029\/2006TC002078"},{"key":"ref_71","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1046\/j.0263-4929.2000.00299.x","article-title":"Role of Fluids in the Metamorphism of the Alpine Fault Zone, New Zealand","volume":"19","author":"Vry","year":"2001","journal-title":"J. Metamorph. Geol."},{"key":"ref_72","doi-asserted-by":"crossref","first-page":"B04201","DOI":"10.1029\/2003JB002822","article-title":"Fluid Flow in Compressive Tectonic Settings: Implications for Midcrustal Seismic Reflectors and Downward Fluid Migration","volume":"109","author":"Connolly","year":"2004","journal-title":"J. Geophys. Res. Solid Earth"},{"key":"ref_73","doi-asserted-by":"crossref","first-page":"122","DOI":"10.1016\/j.tecto.2013.11.005","article-title":"Seismically Constrained Thermo-Rheological Structure of the Eastern Tibetan Margin: Implication for Lithospheric Delamination","volume":"627","author":"Chen","year":"2014","journal-title":"Tectonophysics"},{"key":"ref_74","doi-asserted-by":"crossref","first-page":"3741","DOI":"10.1029\/2001GL013269","article-title":"Magnetotelluric Imaging of Fluids in Intraplate Earthquake Zones, NE Japan Back Arc","volume":"28","author":"Ogawa","year":"2001","journal-title":"Geophys. Res. Lett."},{"key":"ref_75","doi-asserted-by":"crossref","first-page":"4054","DOI":"10.1002\/2017GL072936","article-title":"Role of Deep Crustal Fluids in the Genesis of Intraplate Earthquakes in the Kachchh Region, Northwestern India","volume":"44","author":"Mahesh","year":"2017","journal-title":"Geophys. Res. Lett."},{"key":"ref_76","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1007\/s11430-019-9633-y","article-title":"Connection between Earthquakes and Deep Fluids Revealed by Magnetotelluric Imaging in Songyuan, China","volume":"64","author":"Tang","year":"2021","journal-title":"Sci. China Earth Sci."},{"key":"ref_77","doi-asserted-by":"crossref","first-page":"229039","DOI":"10.1016\/j.tecto.2021.229039","article-title":"Magnetotelluric Evidence of Fluid-Related Seismicity beneath the Chuxiong Basin, SE Tibetan Plateau","volume":"816","author":"Li","year":"2021","journal-title":"Tectonophysics"},{"key":"ref_78","doi-asserted-by":"crossref","first-page":"e2021GL096415","DOI":"10.1029\/2021GL096415","article-title":"The Role of Metamorphic Fluid in Tectonic Tremor Along the Alpine Fault, New Zealand","volume":"49","author":"Chapman","year":"2022","journal-title":"Geophys. Res. Lett."},{"key":"ref_79","doi-asserted-by":"crossref","first-page":"e2020JB019959","DOI":"10.1029\/2020JB019959","article-title":"The Role of Fluids in the 2008 Ms8.0 Wenchuan Earthquake, China","volume":"126","author":"Wang","year":"2021","journal-title":"J. Geophys. Res. Solid Earth"},{"key":"ref_80","doi-asserted-by":"crossref","first-page":"B09316","DOI":"10.1029\/2005JB004129","article-title":"Does Shear Heating of Pore Fluid Contribute to Earthquake Nucleation?","volume":"111","author":"Segall","year":"2006","journal-title":"J. Geophys. Res. Solid Earth"},{"key":"ref_81","doi-asserted-by":"crossref","first-page":"1139","DOI":"10.1186\/BF03353315","article-title":"Fluid Pressure Evolution during the Earthquake Cycle Controlled by Fluid Flow and Pressure Solution Crack Sealing","volume":"54","author":"Gratier","year":"2002","journal-title":"Earth Planets Sp."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/14\/13\/2990\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,31]],"date-time":"2024-07-31T19:50:20Z","timestamp":1722455420000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/14\/13\/2990"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,6,22]]},"references-count":81,"journal-issue":{"issue":"13","published-online":{"date-parts":[[2022,7]]}},"alternative-id":["rs14132990"],"URL":"http:\/\/dx.doi.org\/10.3390\/rs14132990","relation":{},"ISSN":["2072-4292"],"issn-type":[{"type":"electronic","value":"2072-4292"}],"subject":[],"published":{"date-parts":[[2022,6,22]]}}}