iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.3390/E23101325
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,20]],"date-time":"2024-07-20T04:10:19Z","timestamp":1721448619214},"reference-count":35,"publisher":"MDPI AG","issue":"10","license":[{"start":{"date-parts":[[2021,10,11]],"date-time":"2021-10-11T00:00:00Z","timestamp":1633910400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"Fundamental Research Funds for the Provincial Universities of Zhejiang","award":["GK199900299012-026"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Entropy"],"abstract":"Calculation of the thermal conductivity of nanofluids by molecular dynamics (MD) is very common. Regrettably, general MD can only be employed to simulate small systems due to the huge computation workload. Instead, the computation workload can be considerably reduced due to the coarse-grained fluid when multiparticle collision dynamics (MPCD) is employed. Hence, such a method can be utilized to simulate a larger system. However, the selection of relevant parameters of MPCD noticeably influences the calculation results. To this end, parameterization investigations for various bin sizes, number densities, time-steps, rotation angles and temperatures are carried out, and the influence of these parameters on the calculation of thermal conductivity are analyzed. Finally, the calculations of thermal conductivity for liquid argon, water and Cu-water nanofluid are performed, and the errors compared to the theoretical values are 3.4%, 1.5% and 1.2%, respectively. This proves that the method proposed in the present work for calculating the thermal conductivity of nanofluids is applicable.<\/jats:p>","DOI":"10.3390\/e23101325","type":"journal-article","created":{"date-parts":[[2021,10,12]],"date-time":"2021-10-12T01:45:32Z","timestamp":1634003132000},"page":"1325","source":"Crossref","is-referenced-by-count":3,"title":["Preference Parameters for the Calculation of Thermal Conductivity by Multiparticle Collision Dynamics"],"prefix":"10.3390","volume":"23","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-6114-3326","authenticated-orcid":false,"given":"Ruijin","family":"Wang","sequence":"first","affiliation":[{"name":"School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China"}]},{"given":"Zhen","family":"Zhang","sequence":"additional","affiliation":[{"name":"School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China"}]},{"given":"Long","family":"Li","sequence":"additional","affiliation":[{"name":"School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China"}]},{"given":"Zefei","family":"Zhu","sequence":"additional","affiliation":[{"name":"School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China"}]}],"member":"1968","published-online":{"date-parts":[[2021,10,11]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"6371","DOI":"10.1063\/1.452424","article-title":"Thermal conductivity of the Lennard-Jones liquid by Molecular Dynamics Calculations","volume":"86","author":"Vogelsang","year":"1987","journal-title":"J. Chem. Phys."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"1001","DOI":"10.1007\/s00339-011-6379-z","article-title":"Molecular dynamics simulation of thermal conductivity of Cu-Ar nanofluid using EAM potential for Cu-Cu Interactions","volume":"103","author":"Kang","year":"2011","journal-title":"Appl. Phys. A Mater. Sci. Process."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"1038","DOI":"10.1002\/aic.690490420","article-title":"Aggregation structure and shermal conductivity of nanofluids","volume":"49","author":"Xuan","year":"2003","journal-title":"AIChE J."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"1138","DOI":"10.1016\/j.ijheatmasstransfer.2018.08.117","article-title":"Investigation of the aggregation morphology of nanoparticle on the thermal conductivity of nanofluid by molecular dynamics simulations","volume":"127","author":"Wang","year":"2018","journal-title":"Int. J. Heat Mass Transf."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"054401","DOI":"10.7498\/aps.68.20181740","article-title":"Effect of aggregation morphology of nanoparticles on thermal conductivity of nanofluid","volume":"68","author":"Zhang","year":"2019","journal-title":"Acta Phys. Sin."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"7812","DOI":"10.1021\/jp071097f","article-title":"The MARTINI force field: Coarse grained model for biomolecular simulation","volume":"111","author":"Marrink","year":"2007","journal-title":"J. Phys. Chem. B"},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"3195","DOI":"10.1021\/ct900313w","article-title":"Martini coarse-grained force field: Extension to carbo-hydrates","volume":"5","author":"Lopez","year":"2009","journal-title":"J. Chem. Theory Comp."},{"key":"ref_8","first-page":"871","article-title":"Simulations studies of viscosity of Cu-H2O nanofluids based on coarse graining water molecules","volume":"46","author":"He","year":"2014","journal-title":"Chin. J. Theory Appl. Mech."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"8605","DOI":"10.1063\/1.478857","article-title":"Mesoscopic model for solvent dynamics","volume":"110","author":"Malevanets","year":"1999","journal-title":"J. Chem. Phys."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"2069","DOI":"10.1007\/s11012-012-9576-8","article-title":"Flow simulations with multi-particle collision dynamics","volume":"47","author":"Chinappi","year":"2012","journal-title":"Meccanica"},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"4470","DOI":"10.1073\/pnas.1218869110","article-title":"Emergence of metachronal waves in cilia arrays","volume":"110","author":"Elgeti","year":"2013","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"085012","DOI":"10.1088\/1367-2630\/14\/8\/085012","article-title":"Modeling the locomotion of the African trypanosome using multi-particle collision dynamics","volume":"14","author":"Babu","year":"2012","journal-title":"New J. Phys."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"4661","DOI":"10.1039\/C3SM27949A","article-title":"Thermophoretically induced flow field around a colloidal particle","volume":"9","author":"Yang","year":"2013","journal-title":"Soft Matter"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"7446","DOI":"10.1039\/C8SM01132J","article-title":"Thermophoretic Forces on a Mesoscopic Scale","volume":"14","author":"Burelbach","year":"2018","journal-title":"Soft Matter"},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"074902","DOI":"10.1063\/1.5113588","article-title":"Multi-particle collision dynamics for a coarse-grained model of soft colloids","volume":"151","author":"Diego","year":"2019","journal-title":"J. Chem. Phys."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"462","DOI":"10.1016\/j.jmmm.2018.10.065","article-title":"Field effect in the viscosity of magnetic colloids studied by multi-particle collision dynamics","volume":"474","author":"Zablotsky","year":"2019","journal-title":"J. Magn. Magn. Mater."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"053301","DOI":"10.1103\/PhysRevE.98.053301","article-title":"Hydrodynamic interactions between solutes in multiparticle collision dynamics","volume":"98","author":"Dahirel","year":"2018","journal-title":"Phys. Rev. E"},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"043304","DOI":"10.1103\/PhysRevE.88.043304","article-title":"Dynamics of solutes with hydrodynamic interactions: Comparison between Brownian dynamics and stochastic rotation dynamics simulations","volume":"88","author":"Batot","year":"2013","journal-title":"Phys. Rev. E"},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1007\/s00397-014-0817-8","article-title":"Numerical simulation of star polymers under shear flow using a coupling method of multi-particle collision dynamics and molecular dynamics","volume":"54","author":"Yamamoto","year":"2015","journal-title":"Rheol. Acta"},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"144101","DOI":"10.1063\/1.4917039","article-title":"Computation of shear viscosity of colloidal suspensions by SRD-MD","volume":"142","author":"Laganapan","year":"2015","journal-title":"J. Chem. Phys."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"105501","DOI":"10.1016\/j.icheatmasstransfer.2021.105501","article-title":"Evaluation of the morphology of aggregation and thermal conductivity of Cu-H2O nanofluid by MPCD-MD hybrid method","volume":"127","author":"Du","year":"2021","journal-title":"Int. Commun. Heat Mass Transf."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"284132","DOI":"10.1088\/0953-8984\/24\/28\/284132","article-title":"Thermophoresis of colloids by mesoscale simulations","volume":"24","author":"Yang","year":"2012","journal-title":"J. Phys. Condens. Matter"},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"34","DOI":"10.1016\/j.coche.2019.02.007","article-title":"Modeling hydrodynamic interactions in soft materials with multiparticle collision dynamics","volume":"23","author":"Howard","year":"2019","journal-title":"Cur. Opin. Chem. Eng."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"284117","DOI":"10.1088\/0953-8984\/23\/28\/284117","article-title":"Effects of hydrodynamic interactions in binary colloidal mixtures driven oppositely by oscillatory external fields","volume":"23","author":"Wysocki","year":"2011","journal-title":"J. Phys. Condens. Matter"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"6505","DOI":"10.1021\/jp046040x","article-title":"Kinetic Theory Derivation of the Transport Coefficients of Stochastic Rotation Dynamics","volume":"109","author":"Pooley","year":"2005","journal-title":"Phys. Chem. B"},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"066705","DOI":"10.1103\/PhysRevE.67.066705","article-title":"Stochastic rotation dynamics. II. Transport coefficients, numerics, and long-time tails","volume":"67","author":"Ihle","year":"2003","journal-title":"Phys. Rev. E"},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"6388","DOI":"10.1063\/1.1603721","article-title":"Transport coefficients of a mesoscopic fluid dynamics model","volume":"119","author":"Kikuchi","year":"2008","journal-title":"J. Chem. Phys."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"084106","DOI":"10.1063\/1.3687168","article-title":"Temperature inhomogeneities simulated with multiparticle collision dynamics","volume":"136","author":"Ripoll","year":"2012","journal-title":"J. Chem. Phys."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"016701","DOI":"10.1103\/PhysRevE.72.016701","article-title":"Dynamic regimes of fluids simulated by multiparticle collision dynamics","volume":"72","author":"Ripoll","year":"2005","journal-title":"Phys. Rev. E"},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"124204","DOI":"10.1103\/PhysRevFluids.2.124204","article-title":"Isotropic stochastic rotation dynamics","volume":"12","author":"Muhlbauer","year":"2017","journal-title":"Phys. Rev. Fluids"},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"013301","DOI":"10.1103\/PhysRevE.92.013301","article-title":"Effect of angular momentum conservation on hydrodynamic simulations of colloids","volume":"92","author":"Yang","year":"2015","journal-title":"Phys. Rev. E"},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"013310","DOI":"10.1103\/PhysRevE.91.013310","article-title":"Thermostat for nonequilibrium multiparticle collision dynamics simulations","volume":"91","author":"Huang","year":"2015","journal-title":"Phys. Rev. E"},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"046705","DOI":"10.1103\/PhysRevE.76.046705","article-title":"Relevance of angular momentum conservation in mesoscale hydrodynamics simulations","volume":"76","author":"Noguchi","year":"2007","journal-title":"Phys. Rev. E"},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"016706","DOI":"10.1103\/PhysRevE.78.016706","article-title":"Transport coefficients of off-lattice mesoscale-hydrodynamics simulation techniques","volume":"78","author":"Noguchi","year":"2008","journal-title":"Phys. Rev. E"},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"6082","DOI":"10.1063\/1.473271","article-title":"A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity","volume":"106","year":"1997","journal-title":"J. Chem. Phys."}],"container-title":["Entropy"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1099-4300\/23\/10\/1325\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,20]],"date-time":"2024-07-20T03:41:24Z","timestamp":1721446884000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1099-4300\/23\/10\/1325"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,10,11]]},"references-count":35,"journal-issue":{"issue":"10","published-online":{"date-parts":[[2021,10]]}},"alternative-id":["e23101325"],"URL":"https:\/\/doi.org\/10.3390\/e23101325","relation":{},"ISSN":["1099-4300"],"issn-type":[{"value":"1099-4300","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,10,11]]}}}