iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.3390/COMPUTATION12050105
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,5,18]],"date-time":"2024-05-18T00:42:55Z","timestamp":1715992975731},"reference-count":75,"publisher":"MDPI AG","issue":"5","license":[{"start":{"date-parts":[[2024,5,17]],"date-time":"2024-05-17T00:00:00Z","timestamp":1715904000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100006769","name":"Russian Science Foundation","doi-asserted-by":"publisher","award":["22-79-10309"],"id":[{"id":"10.13039\/501100006769","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Computation"],"abstract":"This paper discusses an approach to estimating the parameters of the cohesive zone model (CZM) by mode II by extruding the bushing along the lug axis. This method of evaluation requires small samples, which is particularly relevant when investigating short fiber-reinforced polymers (SFRPs) with additively manufactured embedded elements. Adhesion is investigated on the example of 30% carbon fiber-reinforced polyamide-6 molded to Ti-6Al-4V (VT6) selective laser-melted (SLM) alloy bushing in cases of a roughness Ra = 2.66 \u03bcm (vibratory finishing), Ra = 8.79 \u03bcm (sandblasting), and Ra = 10.02 (directly from SLM). The values of the maximum equivalent tangential contact stress were in a range from 1.1 MPa to 9.5 MPa, while the critical fracture energy for tangential slip was estimated at 15 N\/mm for all cases. Experimental validation of the obtained CZM mode II was carried out by evaluating the load-carrying capacity of the lugs with different bushings. In both the experiment and the calculation, greater bushing roughness provides greater lug load-bearing capacity. The ribbed bushings added significant strength in the experiments, which confirmed the importance of considering the tangential mode in the contact model. The presented models can be used for the preliminary evaluation of short fiber-reinforced polyamide-6 parts with titanium-embedded elements bearing capacity.<\/jats:p>","DOI":"10.3390\/computation12050105","type":"journal-article","created":{"date-parts":[[2024,5,17]],"date-time":"2024-05-17T13:10:22Z","timestamp":1715951422000},"page":"105","source":"Crossref","is-referenced-by-count":0,"title":["Short Fiber-Reinforced Polymer Polyamide 6 Lugs and Selective Laser-Melted Ti-6Al-4V Bushing Contact Cohesive Zone Model Mode II Parameters\u2019 Evaluation"],"prefix":"10.3390","volume":"12","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-2698-1348","authenticated-orcid":false,"given":"Andry","family":"Sedelnikov","sequence":"first","affiliation":[{"name":"Institute of Aerospace Engineering, Samara National Research University, 34 Moskovskoe Shosse, Samara 443086, Russia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0893-9878","authenticated-orcid":false,"given":"Evgenii","family":"Kurkin","sequence":"additional","affiliation":[{"name":"Institute of Aerospace Engineering, Samara National Research University, 34 Moskovskoe Shosse, Samara 443086, Russia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9556-6290","authenticated-orcid":false,"given":"Vitaliy","family":"Smelov","sequence":"additional","affiliation":[{"name":"Institute of Engine and Power Plant Engineering, Samara National Research University, 34 Moskovskoe Shosse, Samara 443086, Russia"}]},{"given":"Vladislava","family":"Chertykovtseva","sequence":"additional","affiliation":[{"name":"Institute of Aerospace Engineering, Samara National Research University, 34 Moskovskoe Shosse, Samara 443086, Russia"}]},{"given":"Vyacheslav","family":"Alekseev","sequence":"additional","affiliation":[{"name":"Institute of Engine and Power Plant Engineering, Samara National Research University, 34 Moskovskoe Shosse, Samara 443086, Russia"}]},{"given":"Andrey","family":"Gavrilov","sequence":"additional","affiliation":[{"name":"Institute of Aerospace Engineering, Samara National Research University, 34 Moskovskoe Shosse, Samara 443086, Russia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6893-1894","authenticated-orcid":false,"given":"Evgenii","family":"Kishov","sequence":"additional","affiliation":[{"name":"Institute of Aerospace Engineering, Samara National Research University, 34 Moskovskoe Shosse, Samara 443086, Russia"}]},{"given":"Maksim","family":"Zvyagincev","sequence":"additional","affiliation":[{"name":"Institute of Engine and Power Plant Engineering, Samara National Research University, 34 Moskovskoe Shosse, Samara 443086, Russia"}]},{"given":"Sergey","family":"Chernyakin","sequence":"additional","affiliation":[{"name":"Institute of Aerospace Engineering, Samara National Research University, 34 Moskovskoe Shosse, Samara 443086, Russia"}]}],"member":"1968","published-online":{"date-parts":[[2024,5,17]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"545","DOI":"10.2514\/2.2992","article-title":"Design and Manufacturing of Aerospace Composite Structures, State-of-the-Art Assessment","volume":"39","author":"Harris","year":"2002","journal-title":"J. Aircr."},{"key":"ref_2","doi-asserted-by":"crossref","unstructured":"Das, M., Sahu, S., and Parhi, D.R. (2019, January 25\u201326). A Review of Application of Composite Materials for Aerospace Structures and its Damage Detection Using Artificial Intelligence Techniques. Proceedings of the International Conference on Artificial Intelligence in Manufacturing & Renewable Energy (ICAIMRE), Bhubaneswar, India. 10p.","DOI":"10.2139\/ssrn.3714181"},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"818","DOI":"10.15623\/ijret.2014.0315154","article-title":"Stress Analysis and Fatigue Life Prediction of Wing-Fuselage Lug Joint Attachment Bracket of a Transport Aircraft","volume":"3","author":"Sriranga","year":"2014","journal-title":"Int. J. Res. Eng. Technol."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.apm.2010.05.002","article-title":"Analytical Modelling for Static Stress Analysis of Pin-Loaded Lugs with Bush Fitting","volume":"35","author":"Antoni","year":"2011","journal-title":"Appl. Math. Model."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"438","DOI":"10.2514\/3.45326","article-title":"Static Strength Analysis of Pin-Loaded Lugs","volume":"23","author":"Ekvall","year":"1986","journal-title":"J. Aircr."},{"key":"ref_6","unstructured":"Schijve, J., and Hoeymakers, A.H.W. (1978). Delft University of Technology, Department of Aerospace Engineering, Report LR-273, Delft University of Technology."},{"key":"ref_7","first-page":"60","article-title":"Pulickal Design Structural Analysis and Fatigue Calculation of Wing Fuselage Lug Attachment of a Transport Aircraft","volume":"4","author":"Abraham","year":"2017","journal-title":"Int. J. Mag. Eng. Technol. Manag. Res."},{"key":"ref_8","first-page":"4422","article-title":"Comparative Analysis of Aircraft Wing Fuselage Lug Attachment Bracket","volume":"5","author":"Sumanth","year":"2017","journal-title":"Int. J. Technol. Res. Eng."},{"key":"ref_9","unstructured":"Wallin, M., Saarela, O., Law, B., and Liehu, T. (2006, January 3\u20138). RTM Composite Lugs for High Load Transfer Applications. Proceedings of the 25th Congress of the International Council of the Aeronautical Sciences, Hamburg, Germany. Available online: http:\/\/www.icas.org\/ICAS_ARCHIVE\/ICAS2006\/PAPERS\/448.PDF."},{"key":"ref_10","doi-asserted-by":"crossref","unstructured":"Kurkin, E., Espinosa Barcenas, O.U., Kishov, E., and Lukyanov, O. (2024). Topology Optimization and Efficiency Evaluation of Short-Fiber-Reinforced Composite Structures Considering Anisotropy. Computation, 12.","DOI":"10.3390\/computation12020035"},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"575","DOI":"10.3139\/120.111032","article-title":"Comparison of Different Bushing Applications in Composite Structures of the Aerospace Industry","volume":"59","author":"Adin","year":"2017","journal-title":"Mater. Test."},{"key":"ref_12","first-page":"9","article-title":"Shape Optimization of Rubber Bushing Using Differential Evolution Algorithm","volume":"379196","author":"Kaya","year":"2014","journal-title":"Sci. World J."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"14333","DOI":"10.1007\/s00500-021-06159-5","article-title":"Rubber Bushing Optimization by Using a Novel Chaotic Krill Herd Optimization Algorithm","volume":"25","author":"Bilal","year":"2021","journal-title":"Soft Comput."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"109973","DOI":"10.1016\/j.matdes.2021.109973","article-title":"Bi-material microstructural design of biodegradable composites using topology optimization","volume":"209","author":"Zhang","year":"2021","journal-title":"Mater. Des."},{"key":"ref_15","first-page":"3","article-title":"Overview of Injection Molding Technology for Processing Polymers and Their Composites","volume":"8","author":"Fu","year":"2020","journal-title":"ES Mater. Manuf."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"737","DOI":"10.1016\/j.cirp.2016.05.004","article-title":"Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints","volume":"65","author":"Thompson","year":"2016","journal-title":"CIRP Ann."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"948","DOI":"10.1016\/j.progpolymsci.2009.04.007","article-title":"Adhesion of Polymers","volume":"34","author":"Awaja","year":"2009","journal-title":"Prog. Polym. Sci."},{"key":"ref_18","unstructured":"Leyens, C., and Peters, M. (2003). Fundamentals and Applications, WILEY-VCH Verlag GmbH & Co. KGaA."},{"key":"ref_19","unstructured":"Fridlyander, J.N. (2005). Titanium Alloys: Russian Aircraft and Aerospace Application, CRC Press."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"162618","DOI":"10.1016\/j.jallcom.2021.162618","article-title":"Heat Treatment of Ti-6Al-4V Alloy Manufactured by Laser-Based Powder-Bed Fusion: Process, Microstructures, and Mechanical Properties Correlations","volume":"895","author":"Etesami","year":"2022","journal-title":"J. Alloys Compd."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"368","DOI":"10.1016\/j.compstruct.2007.05.010","article-title":"CFRP\/titanium Hybrid Material for Improving Composite Bolted Joints","volume":"83","author":"Kolesnikov","year":"2008","journal-title":"Compos. Struct."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"323","DOI":"10.1615\/NanoSciTechnolIntJ.v8.i4.30","article-title":"Study of the Structure and Mechanical Characteristics of Samples Obtained by Selective Laser Melting Technology from VT6 Alloy Metal Powder","volume":"8","author":"Agapovichev","year":"2017","journal-title":"Nanosci. Technol. Int. J."},{"key":"ref_23","unstructured":"Aleksandrov, V.K., Anoshkin, N.F., Bochvar, G.A., Brun, M.Y., Gelman, A.A., Domnin, I.I., Djakonov, Y.A., Elagina, L.A., Ermanok, M.Z., and Zvereva, Z.F. (1979). Semi-Finished Products from Titanium Alloys, Metallurgiya Press."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"102","DOI":"10.1016\/S0921-5093(99)00674-7","article-title":"Recent Development in Aluminium Alloys for Aerospace Applications","volume":"280","author":"Heinz","year":"2000","journal-title":"Mater. Sci. Eng."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"409","DOI":"10.1007\/s11740-019-00888-1","article-title":"Induction-Based Joining of Titanium with Thermoplastics","volume":"13","author":"Lugauer","year":"2019","journal-title":"Prod. Eng. Res. Devel."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"1852","DOI":"10.1177\/0892705720939139","article-title":"The Bonding Strength of Polyamide-6 Direct Adhesion with Anodized AA5754 Aluminum Alloy","volume":"35","author":"Du","year":"2020","journal-title":"J. Thermoplast. Compos. Mater."},{"key":"ref_27","unstructured":"Reisgen, U., Schleser, M., Scheik, S., Michaeli, W., Gr\u00f6nlund, O., Neu\u00df, A., and Jakob, M. (2011, January 20\u201322). Novel Process Chainsfor the Production of Plastics\/Metal-Hybrids. Proceedings of the 17th International Conference on Concurrent Enterprising (ICE 2011), Aachen, Germany."},{"key":"ref_28","first-page":"38","article-title":"In-Mold Decoration: Foil Technology for Metal Surfaces","volume":"97","author":"Ehrig","year":"2007","journal-title":"Kunststoffe Int."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1016\/S0143-7496(00)00044-0","article-title":"Surface Treatment of Titanium for Adhesive Bonding to Polymer Composites: A Review","volume":"21","author":"Molitor","year":"2001","journal-title":"Int. J. Adhes. Adhes."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"100008","DOI":"10.1016\/j.jajp.2020.100008","article-title":"Bonding Mechanisms in Laser-Assisted Joining of Metal-Polymer Composites","volume":"1","author":"Schricker","year":"2020","journal-title":"J. Adv. Join. Process."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"108941","DOI":"10.1016\/j.compositesb.2021.108941","article-title":"Achieving High-Quality Metal to Polymer-Matrix Composites Joint via Topthe Mic Solid-State Lap Joining","volume":"219","author":"Li","year":"2021","journal-title":"Compos. Part B Eng."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"116744","DOI":"10.1016\/j.jmatprotec.2020.116744","article-title":"Solvent-Aided Direct Adhesion of a Metal\/Polymer Joint using Micro\/Nano Hierarchical Structures","volume":"285","author":"Jun","year":"2020","journal-title":"J. Mater. Process. Technol."},{"key":"ref_33","first-page":"110","article-title":"A Review on Forming Technologies of Fibre Metal Laminates","volume":"4","author":"Ding","year":"2020","journal-title":"Int. J. Lightweight Mater. Manuf."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1016\/0143-7496(95)91627-I","article-title":"Review of Surface Pretreatments for Titanium Alloys","volume":"15","author":"Critchlow","year":"1995","journal-title":"Int. J. Adhes. Adhes."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"042005","DOI":"10.2351\/1.5038052","article-title":"Effects of Oxide Layer on Adhesion and Durability of Titanium and Transparent Polyamide Joint by Laser Joining","volume":"30","author":"Chanthapan","year":"2018","journal-title":"J. Laser Appl."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"370","DOI":"10.1016\/j.phpro.2011.03.146","article-title":"Laser Assisted Joining of Plastic Metal Hybrids","volume":"37","author":"Roesner","year":"2011","journal-title":"Phys. Procedia"},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"1171","DOI":"10.1016\/j.phpro.2014.08.032","article-title":"Laser Surface Pre-Treatment of Aluminium for Hybrid Joints with Glass Fibre Reinforced Thermoplastics","volume":"56","author":"Heckert","year":"2014","journal-title":"Phys. Proc."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"108797","DOI":"10.1016\/j.compositesb.2021.108797","article-title":"Adhesion Enhancement of PEEK\/6161-T6 FLJ Joints via Laser Surface Modification","volume":"216","author":"Wang","year":"2021","journal-title":"Compos. Part B Eng."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"691","DOI":"10.1002\/pen.26244","article-title":"Injection Overmolding of Polymer-Metal Hybrid Structures: A Review","volume":"63","author":"Vasconcelos","year":"2023","journal-title":"Polym. Eng. Sci."},{"key":"ref_40","unstructured":"Kinloch, A.J. (1983). Durability of Structural Adhesives, Elsevier Applied Science."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"128132","DOI":"10.1016\/j.surfcoat.2022.128132","article-title":"Effect of Surface Topography on Injection Joining Ti Alloy for Improved Bonding Strength of Metal-Polymer","volume":"433","author":"Du","year":"2022","journal-title":"Surf. Coat. Technol."},{"key":"ref_42","unstructured":"Larimian, T., and Borkar, T. (2018). Additive Manufacturing of Emerging Materials, Springer International Publishing."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"30","DOI":"10.1038\/s41427-020-0212-0","article-title":"Premature Failure of an Additively Manufactured Material","volume":"12","author":"Wang","year":"2020","journal-title":"NPG Asia Mater."},{"key":"ref_44","first-page":"e146","article-title":"Competition Between Densification and Microstructure of Functional Materials by Selective Laser Melting","volume":"2","author":"Singh","year":"2020","journal-title":"Mater. Des. Process. Commun."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"72","DOI":"10.4028\/www.scientific.net\/KEM.818.72","article-title":"Quasicrystalline Composites by Additive Manufacturing","volume":"818","author":"Prashanth","year":"2019","journal-title":"Key Eng. Mater."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"100097","DOI":"10.1016\/j.mtadv.2020.100097","article-title":"Selective Laser Manufacturing of Ti-Based Alloys and Composites: Impact of Process Parameters, Application Trends, and Future Prospects","volume":"8","author":"Singh","year":"2020","journal-title":"Mater. Today Adv."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"2587","DOI":"10.1007\/s11012-015-0221-1","article-title":"Cohesive Zone Models and Impact Damage Predictions for Composite Structures","volume":"50","author":"Abrate","year":"2015","journal-title":"Meccanica"},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1016\/j.matdes.2014.08.072","article-title":"Comparative Study of the Mode I and Mode II Delamination Fatigue Properties of Z-Pinned Aircraft Composites","volume":"65","author":"Pegorin","year":"2015","journal-title":"Mater. Des."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1520\/CTR10914J","article-title":"Delamination Growth and Thresholds in a Carbon\/Epoxy Composite under Fatigue Loading","volume":"23","author":"Asp","year":"2001","journal-title":"Compos. Technol. Res."},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"1154","DOI":"10.1016\/j.ijfatigue.2006.02.004","article-title":"Modes I and II Interlaminar Fracture Toughness and Fatigue Delamination of CF\/Epoxy Laminates with Self-Same Epoxy Interleaf","volume":"28","author":"Hojo","year":"2006","journal-title":"Int. J. Fatigue"},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"2325","DOI":"10.1016\/j.compscitech.2007.09.012","article-title":"Interlaminar Crack Initiation and Growth Rate in a Carbon\u2013Fibre Epoxy Composite under Mode-I Fatigue Loading","volume":"68","author":"Vina","year":"2008","journal-title":"Compos. Sci. Technol."},{"key":"ref_52","unstructured":"Thouless, M., and Parmigiani, J. (2007, January 3\u20136). Mixed-Mode Cohesive-Zone Models for Delamination and Deflection in Composites. Proceedings of the 28th Ris\u00f8 International Symposium on Material Science: Interface Design of Polymer matrix Composites, Roskilde, Denmark."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"909","DOI":"10.1016\/0001-6160(89)90017-5","article-title":"Effects of Non-Planarity on the Mixed Mode Fracture Resistance of Bimaterial Interfaces","volume":"37","author":"Evans","year":"1989","journal-title":"Acta Metall."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"2037","DOI":"10.1016\/0001-6160(88)90305-7","article-title":"Residual Stresses and Cracking in Brittle Solids Bonded with a Thin Ductile Layer","volume":"36","author":"Cao","year":"1988","journal-title":"Acta Metall."},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1007\/s42401-023-00228-3","article-title":"Influence of Cohesive Zone Model Parameters of Polymer Lugs with Metal Bushing on Their Geometrical and Mass Characteristics","volume":"7","author":"Kurkin","year":"2023","journal-title":"Aerosp. Syst."},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"126","DOI":"10.1016\/j.compositesb.2019.03.069","article-title":"Pure Mode I and II Interlaminar Fracture Characterization of Carbon-Fibre Reinforced Polyamide Composite","volume":"169","author":"Reis","year":"2019","journal-title":"Compos. Part B Eng."},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"109204","DOI":"10.1016\/j.compositesb.2021.109204","article-title":"Super-High Bonding Strength of Polyphenylene Sulfide-Aluminum Alloy Composite Structure Achieved by Facile Molding Methods","volume":"224","author":"Li","year":"2021","journal-title":"Compos. Part B Eng."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1186\/s40563-015-0036-2","article-title":"Mode I Critical Fracture Energy of Adhesively Bonded Joints between Glass Fiber Reinforced Thermoplastics","volume":"3","author":"Mahaphasukwat","year":"2015","journal-title":"Appl. Adhes. Sci."},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"213","DOI":"10.1007\/s10704-021-00566-3","article-title":"Determination of Fracture Energy (Mode I) in the Inverse Fiber Metal Laminates using Experimental\u2013Numerical Approach","volume":"234","author":"Duda","year":"2022","journal-title":"Int. J. Fract."},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"212","DOI":"10.1016\/j.jmbbm.2017.07.030","article-title":"Quantifying the Mode II Critical Strain Energy Release Rate of Borate Bioactive Glass Coatings on Ti6Al4V Substrates","volume":"75","author":"Matinmanesh","year":"2017","journal-title":"J. Mech. Behav. Biomed. Mater."},{"key":"ref_61","doi-asserted-by":"crossref","unstructured":"Tsokanas, P., Loutas, T., and Nijhuis, P. (2020). Interfacial Fracture Toughness Assessment of a New Titanium\u2013CFRP Adhesive Joint: An Experimental Comparative Study. Metals, 10.","DOI":"10.3390\/met10050699"},{"key":"ref_62","doi-asserted-by":"crossref","unstructured":"Kurkin, E.I., Spirina, M.O., Espinosa Barcenas, O.U., and Kurkina, E.V. (2022). Calibration of the PA6 Short-Fiber Reinforced Material Model for 10% to 30% Carbon Mass Fraction Mechanical Characteristic Prediction. Polymers, 14.","DOI":"10.3390\/polym14091781"},{"key":"ref_63","unstructured":"Plastics. Determination of Tensile Properties (Standard No. ISO-527-2-2012). Available online: https:\/\/www.iso.org\/standard\/56046.html."},{"key":"ref_64","unstructured":"(2024, March 08). Gamma-Plast UPA 6 30 M. Available online: https:\/\/gamma-plast.ru\/poliamid\/uglenapolnenniy\/poliamid-upa-6-30-m\/."},{"key":"ref_65","unstructured":"(2024, March 08). ZwickRoell LP. Available online: https:\/\/www.zwickroell.com\/ru\/produkcija\/staticheskie-ispytatelnye-mashiny\/universalnye-mashiny-dlja-staticheskikh-ispytanii\/allroundline\/."},{"key":"ref_66","doi-asserted-by":"crossref","first-page":"1701","DOI":"10.1002\/nme.93","article-title":"Finite element interface models for the delamination analysis of laminated composites: Mechanical and computational issues","volume":"50","author":"Alfano","year":"2001","journal-title":"Int. J. Numer. Methods Eng."},{"key":"ref_67","unstructured":"(2019). Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites (Standard No. ASTM D7905\/D7905M-19e1)."},{"key":"ref_68","unstructured":"(2009). Aluminium and Wrought Aluminium Alloys (Standard No. GOST 4784-97)."},{"key":"ref_69","unstructured":"(2024, May 02). Aluminum 2024-T4; 2024-T351. Available online: https:\/\/www.matweb.com\/search\/datasheet_print.aspx?matguid=67d8cd7c00a04ba29b618484f7ff7524."},{"key":"ref_70","unstructured":"(2024, March 08). SHIMADZU. Available online: https:\/\/www.shimadzu.com\/an\/products\/materials-testing\/fatigue-testingimpact-testing\/ehf-e-series\/index.html."},{"key":"ref_71","unstructured":"(2024, March 08). Negri Bossi: Global Injection Moulding Machine Supplier. Available online: https:\/\/www.negribossi.com\/."},{"key":"ref_72","unstructured":"(2024, March 08). Akromid B3 ICF 30 Black. Available online: https:\/\/akro-plastic.com\/en\/product\/akromid-b3-icf-30-schwarz-5119-de."},{"key":"ref_73","doi-asserted-by":"crossref","first-page":"417","DOI":"10.1016\/0095-8522(65)90022-X","article-title":"Rheology of non-Newtonian fluids: A New flow equation for pseudo-plastic systems","volume":"20","author":"Cross","year":"1965","journal-title":"J. Colloid Sci."},{"key":"ref_74","unstructured":"Digimat, M.F. (2024, May 02). User\u2019s Guide. Available online: https:\/\/help-be.hexagonmi.com\/bundle\/Digimat_2023.1_MF_User_Guide\/raw\/resource\/enus\/Digimat_2023.1_MF_User_Guide.pdf."},{"key":"ref_75","doi-asserted-by":"crossref","first-page":"524","DOI":"10.1002\/pc.10376","article-title":"A model to predict the strength of short fiber composites","volume":"20","author":"Bernardo","year":"1999","journal-title":"Polym. Compos."}],"container-title":["Computation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2079-3197\/12\/5\/105\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,5,17]],"date-time":"2024-05-17T13:33:56Z","timestamp":1715952836000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2079-3197\/12\/5\/105"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,5,17]]},"references-count":75,"journal-issue":{"issue":"5","published-online":{"date-parts":[[2024,5]]}},"alternative-id":["computation12050105"],"URL":"https:\/\/doi.org\/10.3390\/computation12050105","relation":{},"ISSN":["2079-3197"],"issn-type":[{"value":"2079-3197","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,5,17]]}}}