iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.3390/AXIOMS11120722
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,13]],"date-time":"2024-08-13T17:33:27Z","timestamp":1723570407847},"reference-count":59,"publisher":"MDPI AG","issue":"12","license":[{"start":{"date-parts":[[2022,12,12]],"date-time":"2022-12-12T00:00:00Z","timestamp":1670803200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"Natural Science Foundation of China","award":["11501435","61976130"]},{"DOI":"10.13039\/501100007128","name":"Natural Science Foundation of Shaanxi Province","doi-asserted-by":"publisher","award":["2022KRM170"],"id":[{"id":"10.13039\/501100007128","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100015401","name":"key research and development projects of Shaanxi Province","doi-asserted-by":"publisher","award":["2018KW-021"],"id":[{"id":"10.13039\/501100015401","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Axioms"],"abstract":"Multi-view clustering algorithms based on matrix factorization have gained enormous development in recent years. Although these algorithms have gained impressive results, they typically neglect the spatial structures that the latent data representation should have, for example, the ideal data representation owns a block structure just like the indicator matrix has. To address this issue, a new algorithm named latent multi-view semi-nonnegative matrix factorization with block diagonal constraint (LMSNB) is proposed. First, latent representation learning and Semi-NMF are combined to get a lower-dimensional representation with consistent information from different views. Second, the block diagonal constraint is able to capture the global structure of original data. In addition, the graph regularization is considered in our model to preserve the local structure. LMSNB can deal with negative data matrix and be applied to more fields. Although the low dimensional representation from semi-nonnegative matrix factorization loses some valuable information, it still has same structure as original data with the help of block diagonal constraint and graph regularization. Finally, an iterative optimization algorithm is proposed for our objective problem. Experiments on several multi-view benchmark datasets demonstrate the effectiveness of our approach against other state-of-the-art methods.<\/jats:p>","DOI":"10.3390\/axioms11120722","type":"journal-article","created":{"date-parts":[[2022,12,13]],"date-time":"2022-12-13T08:32:32Z","timestamp":1670920352000},"page":"722","source":"Crossref","is-referenced-by-count":1,"title":["Latent Multi-View Semi-Nonnegative Matrix Factorization with Block Diagonal Constraint"],"prefix":"10.3390","volume":"11","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0705-7969","authenticated-orcid":false,"given":"Lin","family":"Yuan","sequence":"first","affiliation":[{"name":"School of Science, Xi\u2019an Polytechnic University, Xi\u2019an 710084, China"}]},{"given":"Xiaofei","family":"Yang","sequence":"additional","affiliation":[{"name":"School of Science, Xi\u2019an Polytechnic University, Xi\u2019an 710084, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8765-1233","authenticated-orcid":false,"given":"Zhiwei","family":"Xing","sequence":"additional","affiliation":[{"name":"School of Science, Xi\u2019an Polytechnic University, Xi\u2019an 710084, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3356-7535","authenticated-orcid":false,"given":"Yingcang","family":"Ma","sequence":"additional","affiliation":[{"name":"School of Science, Xi\u2019an Polytechnic University, Xi\u2019an 710084, China"}]}],"member":"1968","published-online":{"date-parts":[[2022,12,12]]},"reference":[{"key":"ref_1","first-page":"100","article-title":"Algorithm AS 136: A k-means clustering algorithm","volume":"28","author":"Hartigan","year":"1979","journal-title":"J. R. Stat. Soc. Ser. C Appl. Stat."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"395","DOI":"10.1007\/s11222-007-9033-z","article-title":"A tutorial on spectral clustering","volume":"17","year":"2007","journal-title":"Stat. Comput."},{"key":"ref_3","doi-asserted-by":"crossref","unstructured":"Ehsan Elhamifar, R.V. (2009, January 20\u201325). Sparse subspace clustering. Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, FL, USA.","DOI":"10.1109\/CVPRW.2009.5206547"},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1109\/TPAMI.2012.88","article-title":"Robust recovery of subspace structures by low-rank representation","volume":"35","author":"Liu","year":"2012","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"109884","DOI":"10.1016\/j.knosys.2022.109884","article-title":"Dual Regularized Unsupervised Feature Selection Based on Matrix Factorization and Minimum Redundancy with application in gene selection","volume":"256","author":"Rostami","year":"2022","journal-title":"Knowl.-Based Syst."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"52508","DOI":"10.1109\/ACCESS.2022.3175317","article-title":"A Novel Time-Aware Food Recommender-System Based on Deep Learning and Graph Clustering","volume":"10","author":"Rostami","year":"2022","journal-title":"IEEE Access"},{"key":"ref_7","doi-asserted-by":"crossref","unstructured":"Caruso, G., Gattone, S.A., Balzanella, A., and Di Battista, T. (2019). Cluster Analysis: An Application to a Real Mixed-Type Data Set. Models and Theories in Social Systems, Springer International Publishing.","DOI":"10.1007\/978-3-030-00084-4_27"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"14863","DOI":"10.1073\/pnas.95.25.14863","article-title":"Cluster analysis and display of genome-wide expression patterns","volume":"95","author":"Eisen","year":"1998","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"1799","DOI":"10.2337\/dc10-1938","article-title":"Cluster analysis of self-monitoring blood glucose assessments in clinical islet cell transplantation for type 1 diabetes","volume":"34","author":"Takita","year":"2011","journal-title":"Diabetes Care"},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"105766","DOI":"10.1016\/j.compbiomed.2022.105766","article-title":"Graph-based relevancy-redundancy gene selection method for cancer diagnosis","volume":"147","author":"Azadifar","year":"2022","journal-title":"Comput. Biol. Med."},{"key":"ref_11","unstructured":"Bickel, S., and Scheffer, T. (2004, January 1\u20134). Multi-View Clustering. Proceedings of the Fourth IEEE International Conference on Data Mining (ICDM\u201904), Brighton, UK."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"146","DOI":"10.1109\/TAI.2021.3065894","article-title":"A survey on multi-view clustering","volume":"2","author":"Chao","year":"2021","journal-title":"IEEE Trans. Artif. Intell."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"2606","DOI":"10.1109\/TMI.2020.2992546","article-title":"Diagnosis of coronavirus disease 2019 (COVID-19) with structured latent multi-view representation learning","volume":"39","author":"Kang","year":"2020","journal-title":"IEEE Trans. Med. Imaging"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"148","DOI":"10.1016\/j.neucom.2020.02.104","article-title":"An overview of recent multi-view clustering","volume":"402","author":"Fu","year":"2020","journal-title":"Neurocomputing"},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"2014","DOI":"10.1109\/TKDE.2019.2913377","article-title":"Parameter-free weighted multi-view projected clustering with structured graph learning","volume":"32","author":"Wang","year":"2019","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"ref_16","doi-asserted-by":"crossref","unstructured":"Wang, S., Liu, X., Zhu, E., Tang, C., Liu, J., Hu, J., Xia, J., and Yin, J. (2019, January 10\u201316). Multi-view Clustering via Late Fusion Alignment Maximization. Proceedings of the IJCAI, Macao, China.","DOI":"10.24963\/ijcai.2019\/524"},{"key":"ref_17","unstructured":"Peng, X., Huang, Z., Lv, J., Zhu, H., and Zhou, J.T. (2019, January 9\u201315). COMIC: Multi-view clustering without parameter selection. Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"107207","DOI":"10.1016\/j.patcog.2020.107207","article-title":"Auto-weighted multi-view co-clustering via fast matrix factorization","volume":"102","author":"Nie","year":"2020","journal-title":"Pattern Recognit."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"330","DOI":"10.1109\/TPAMI.2020.3011148","article-title":"Multi-view clustering: A scalable and parameter-free bipartite graph fusion method","volume":"44","author":"Li","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"ref_20","unstructured":"Kumar, A., and Daum\u00e9, H. (July, January 28). A co-training approach for multi-view spectral clustering. Proceedings of the 28th International Conference on Machine Learning (ICML-11), Bellevue, WA, USA."},{"key":"ref_21","doi-asserted-by":"crossref","unstructured":"Lee, C., and Liu, T. (2016, January 25\u201328). Guided co-training for multi-view spectral clustering. Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA.","DOI":"10.1109\/ICIP.2016.7533119"},{"key":"ref_22","doi-asserted-by":"crossref","unstructured":"Lu, R., Liu, J., Wang, Y., Xie, H., and Zuo, X. (2019). Auto-encoder based co-training multi-view representation learning. Advances in Knowledge Discovery and Data Mining, Proceedings of the 23rd Pacific-Asia Conference, PAKDD 2019, Macau, China, 14\u201317 April 2019, Springer.","DOI":"10.1007\/978-3-030-16142-2_10"},{"key":"ref_23","doi-asserted-by":"crossref","unstructured":"Zhao, B., Kwok, J.T., and Zhang, C. (May, January 30). Multiple kernel clustering. Proceedings of the 2009 SIAM International Conference on Data Mining, Sparks, NV, USA.","DOI":"10.1137\/1.9781611972795.55"},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"2567","DOI":"10.1109\/TMM.2021.3086727","article-title":"Projective Multiple Kernel Subspace Clustering","volume":"24","author":"Sun","year":"2021","journal-title":"IEEE Trans. Multimed."},{"key":"ref_25","unstructured":"Nie, F., Li, J., and Li, X. (2016, January 9\u201315). Parameter-free auto-weighted multiple graph learning: A framework for multiview clustering and semi-supervised classification. Proceedings of the IJCAI, New York, NY, USA."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1007\/s10844-014-0307-6","article-title":"Multi-view document clustering via ensemble method","volume":"43","author":"Hussain","year":"2014","journal-title":"J. Intell. Inf. Syst."},{"key":"ref_27","doi-asserted-by":"crossref","unstructured":"Nie, F., Li, J., and Li, X. (2017, January 19\u201325). Self-weighted Multiview Clustering with Multiple Graphs. Proceedings of the IJCAI, Melbourne, Australia.","DOI":"10.24963\/ijcai.2017\/357"},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"86","DOI":"10.1109\/TPAMI.2018.2877660","article-title":"Generalized latent multi-view subspace clustering","volume":"42","author":"Zhang","year":"2018","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"4676","DOI":"10.1109\/TKDE.2020.3045770","article-title":"Consensus one-step multi-view subspace clustering","volume":"34","author":"Zhang","year":"2020","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"ref_30","doi-asserted-by":"crossref","unstructured":"Gao, H., Nie, F., Li, X., and Huang, H. (2015, January 7\u201313). Multi-view subspace clustering. Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile.","DOI":"10.1109\/ICCV.2015.482"},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"247","DOI":"10.1016\/j.patcog.2017.08.024","article-title":"Multi-view low-rank sparse subspace clustering","volume":"73","author":"Kopriva","year":"2018","journal-title":"Pattern Recognit."},{"key":"ref_32","doi-asserted-by":"crossref","unstructured":"Wang, X., Guo, X., Lei, Z., Zhang, C., and Li, S.Z. (2017, January 21\u201326). Exclusivity-consistency regularized multi-view subspace clustering. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA.","DOI":"10.1109\/CVPR.2017.8"},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"2531","DOI":"10.1109\/TPAMI.2015.2417578","article-title":"Multi-view intact space learning","volume":"37","author":"Xu","year":"2015","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"ref_34","doi-asserted-by":"crossref","unstructured":"Zhang, C., Hu, Q., Fu, H., Zhu, P., and Cao, X. (2017, January 21\u201326). Latent multi-view subspace clustering. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA.","DOI":"10.1109\/CVPR.2017.461"},{"key":"ref_35","doi-asserted-by":"crossref","unstructured":"Lin, K., Wang, C., Meng, Y., and Zhao, Z. (2017). Multi-view unit intact space learning. Knowledge Science, Engineering and Management, Proceedings of the 10th International Conference, KSEM 2017, Melbourne, VIC, Australia, 19\u201320 August 2017, Springer.","DOI":"10.1007\/978-3-319-63558-3_18"},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"344","DOI":"10.1016\/j.patcog.2018.09.016","article-title":"Multi-view intact space clustering","volume":"86","author":"Huang","year":"2019","journal-title":"Pattern Recognit."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"8083","DOI":"10.1109\/TIP.2020.3010631","article-title":"Latent complete row space recovery for multi-view subspace clustering","volume":"29","author":"Tao","year":"2020","journal-title":"IEEE Trans. Image Process."},{"key":"ref_38","unstructured":"Chen, M., Huang, L., Wang, C., and Huang, D. (2020, January 7\u201312). Multi-view clustering in latent embedding space. Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"409","DOI":"10.1016\/j.neunet.2019.09.013","article-title":"Adaptive latent similarity learning for multi-view clustering","volume":"121","author":"Xie","year":"2020","journal-title":"Neural Netw."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1016\/j.patcog.2018.09.009","article-title":"Multi-view subspace clustering with intactness-aware similarity","volume":"88","author":"Wang","year":"2019","journal-title":"Pattern Recognit."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"788","DOI":"10.1038\/44565","article-title":"Learning the parts of objects by non-negative matrix factorization","volume":"401","author":"Lee","year":"1999","journal-title":"Nature"},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"1548","DOI":"10.1109\/TPAMI.2010.231","article-title":"Graph regularized non-negative matrix factorization for data representation","volume":"33","author":"Cai","year":"2011","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1109\/TPAMI.2008.277","article-title":"Convex and semi-nonnegative matrix factorizations","volume":"32","author":"Ding","year":"2008","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"ref_44","doi-asserted-by":"crossref","unstructured":"Liu, J., Wang, C., Gao, J., and Han, J. (2013, January 2\u20134). Multi-view clustering via joint nonnegative matrix factorization. Proceedings of the 2013 SIAM International Conference on Data Mining, Austin, TX, USA.","DOI":"10.1137\/1.9781611972832.28"},{"key":"ref_45","unstructured":"Hidru, D., and Goldenberg, A. (2014). EquiNMF: Graph Regularized Multiview Nonnegative Matrix Factorization. arXiv."},{"key":"ref_46","doi-asserted-by":"crossref","unstructured":"Rai, N., Negi, S., Chaudhury, S., and Deshmukh, O. (2016, January 4\u20138). Partial multi-view clustering using graph regularized NMF. Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico.","DOI":"10.1109\/ICPR.2016.7899961"},{"key":"ref_47","doi-asserted-by":"crossref","unstructured":"Zhao, H., Ding, Z., and Fu, Y. (2017, January 4\u20139). Multi-view clustering via deep matrix factorization. Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA.","DOI":"10.1609\/aaai.v31i1.10867"},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1214\/aoms\/1177729694","article-title":"On information and sufficiency","volume":"22","author":"Kullback","year":"1951","journal-title":"Ann. Math. Stat."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"1433","DOI":"10.1016\/j.patrec.2008.02.016","article-title":"Non-negative matrix factorization with \u03b1-divergence","volume":"29","author":"Cichocki","year":"2008","journal-title":"Pattern Recognit. Lett."},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"2421","DOI":"10.1162\/NECO_a_00168","article-title":"Algorithms for nonnegative matrix factorization with the \u03b2-divergence","volume":"23","author":"Idier","year":"2011","journal-title":"Neural Comput."},{"key":"ref_51","doi-asserted-by":"crossref","unstructured":"Feng, J., Lin, Z., Xu, H., and Yan, S. (2014, January 23\u201328). Robust subspace segmentation with block-diagonal prior. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA.","DOI":"10.1109\/CVPR.2014.482"},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"487","DOI":"10.1109\/TPAMI.2018.2794348","article-title":"Subspace clustering by block diagonal representation","volume":"41","author":"Lu","year":"2018","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"ref_53","first-page":"585","article-title":"Laplacian eigenmaps and spectral techniques for embedding and clustering","volume":"14","author":"Belkin","year":"2001","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"ref_54","unstructured":"Dattorro, J. (2019). Convex Optimization & Euclidean Distance Geometry, Lulu."},{"key":"ref_55","doi-asserted-by":"crossref","unstructured":"Huang, J., Nie, F., and Huang, H. (2013, January 14\u201318). Spectral rotation versus k-means in spectral clustering. Proceedings of the AAAI Conference on Artificial Intelligence, Bellevue, WA, USA.","DOI":"10.1609\/aaai.v27i1.8683"},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"569","DOI":"10.1137\/080730421","article-title":"A fast algorithm for edge-preserving variational multichannel image restoration","volume":"2","author":"Yang","year":"2009","journal-title":"SIAM J. Imaging Sci."},{"key":"ref_57","doi-asserted-by":"crossref","unstructured":"Chua, T., Tang, J., Hong, R., Li, H., Luo, Z., and Zheng, Y. (2009, January 8\u201310). Nus-wide: A real-world web image database from National University of Singapore. Proceedings of the ACM International Conference on Image and Video Retrieval, Santorini Island, Greece.","DOI":"10.1145\/1646396.1646452"},{"key":"ref_58","unstructured":"Lazebnik, S., Schmid, C., and Ponce, J. (2006, January 17\u201322). Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR\u201906), New York, NY, USA."},{"key":"ref_59","doi-asserted-by":"crossref","unstructured":"Dai, D., and Van Gool, L. (2013, January 1\u20138). Ensemble projection for semi-supervised image classification. Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia.","DOI":"10.1109\/ICCV.2013.259"}],"container-title":["Axioms"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2075-1680\/11\/12\/722\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,11]],"date-time":"2024-08-11T03:21:16Z","timestamp":1723346476000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2075-1680\/11\/12\/722"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,12,12]]},"references-count":59,"journal-issue":{"issue":"12","published-online":{"date-parts":[[2022,12]]}},"alternative-id":["axioms11120722"],"URL":"http:\/\/dx.doi.org\/10.3390\/axioms11120722","relation":{},"ISSN":["2075-1680"],"issn-type":[{"type":"electronic","value":"2075-1680"}],"subject":[],"published":{"date-parts":[[2022,12,12]]}}}