iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.24963/IJCAI.2021/205
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T13:19:38Z","timestamp":1726406378165},"publisher-location":"California","reference-count":0,"publisher":"International Joint Conferences on Artificial Intelligence Organization","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021,8]]},"abstract":"Federated learning enables multiple parties to collaboratively learn a model without exchanging their data. While most existing federated learning algorithms need many rounds to converge, one-shot federated learning (i.e., federated learning with a single communication round) is a promising approach to make federated learning applicable in cross-silo setting in practice. However, existing one-shot algorithms only support specific models and do not provide any privacy guarantees, which significantly limit the applications in practice. In this paper, we propose a practical one-shot federated learning algorithm named FedKT. By utilizing the knowledge transfer technique, FedKT can be applied to any classification models and can flexibly achieve differential privacy guarantees. Our experiments on various tasks show that FedKT can significantly outperform the other state-of-the-art federated learning algorithms with a single communication round.<\/jats:p>","DOI":"10.24963\/ijcai.2021\/205","type":"proceedings-article","created":{"date-parts":[[2021,8,11]],"date-time":"2021-08-11T11:00:49Z","timestamp":1628679649000},"page":"1484-1490","source":"Crossref","is-referenced-by-count":30,"title":["Practical One-Shot Federated Learning for Cross-Silo Setting"],"prefix":"10.24963","author":[{"given":"Qinbin","family":"Li","sequence":"first","affiliation":[{"name":"National University of Singapore"}]},{"given":"Bingsheng","family":"He","sequence":"additional","affiliation":[{"name":"National University of Singapore"}]},{"given":"Dawn","family":"Song","sequence":"additional","affiliation":[{"name":"University of California, Berkeley"}]}],"member":"10584","event":{"number":"30","sponsor":["International Joint Conferences on Artificial Intelligence Organization (IJCAI)"],"acronym":"IJCAI-2021","name":"Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}","start":{"date-parts":[[2021,8,19]]},"theme":"Artificial Intelligence","location":"Montreal, Canada","end":{"date-parts":[[2021,8,27]]}},"container-title":["Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence"],"original-title":[],"deposited":{"date-parts":[[2021,8,11]],"date-time":"2021-08-11T11:01:58Z","timestamp":1628679718000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.ijcai.org\/proceedings\/2021\/205"}},"subtitle":[],"proceedings-subject":"Artificial Intelligence Research Articles","short-title":[],"issued":{"date-parts":[[2021,8]]},"references-count":0,"URL":"https:\/\/doi.org\/10.24963\/ijcai.2021\/205","relation":{},"subject":[],"published":{"date-parts":[[2021,8]]}}}