iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1515/CMAM-2016-0014
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,6,16]],"date-time":"2024-06-16T00:04:43Z","timestamp":1718496283438},"reference-count":52,"publisher":"Walter de Gruyter GmbH","issue":"3","funder":[{"DOI":"10.13039\/501100001659","name":"Deutsche Forschungsgemeinschaft","doi-asserted-by":"publisher","award":["SPP 1748: BA 2268\/2-1"],"id":[{"id":"10.13039\/501100001659","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2016,7,1]]},"abstract":"Abstract<\/jats:title>Various iterative methods are available for the approximate solution of non-smooth minimization problems. For a popular non-smooth minimization problem arising in image processing, we discuss the suitable application of three prototypical methods and their stability. The methods are compared experimentally with a focus on choice of stopping criteria, influence of rough initial data, step sizes as well as mesh sizes. An overview of existing algorithms is given.<\/jats:p>","DOI":"10.1515\/cmam-2016-0014","type":"journal-article","created":{"date-parts":[[2016,4,13]],"date-time":"2016-04-13T19:14:47Z","timestamp":1460574887000},"page":"361-388","source":"Crossref","is-referenced-by-count":8,"title":["Stability and Experimental Comparison of Prototypical Iterative Schemes for Total Variation Regularized Problems"],"prefix":"10.1515","volume":"16","author":[{"given":"S\u00f6ren","family":"Bartels","sequence":"first","affiliation":[{"name":"Department of Applied Mathematics, Mathematical Institute, University of Freiburg, Hermann-Herder-Str. 9, 79104 Freiburg i.\u2009Br., Germany"}]},{"given":"Marijo","family":"Milicevic","sequence":"additional","affiliation":[{"name":"Department of Applied Mathematics, Mathematical Institute, University of Freiburg, Hermann-Herder-Str. 9, 79104 Freiburg i.\u2009Br., Germany"}]}],"member":"374","published-online":{"date-parts":[[2016,4,13]]},"reference":[{"key":"2023033112444858234_j_cmam-2016-0014_ref_001_w2aab3b7e1734b1b6b1ab2b1b1Aa","doi-asserted-by":"crossref","unstructured":"Acerbi E. and Fusco N., Semicontinuity problems in the calculus of variations, Arch. Ration. Mech. Anal. 86 (1984), no. 2, 125\u2013145.","DOI":"10.1007\/BF00275731"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_002_w2aab3b7e1734b1b6b1ab2b1b2Aa","doi-asserted-by":"crossref","unstructured":"Ambrosio L. and Dal Maso G., On the relaxation in B\u2062V\u2062(\u03a9;\u211dm)${BV(\\Omega;\\mathbb{R}^{m})}$ of quasi-convex integrals, J. Funct. Anal. 109 (1992), 76\u201397.","DOI":"10.1016\/0022-1236(92)90012-8"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_003_w2aab3b7e1734b1b6b1ab2b1b3Aa","doi-asserted-by":"crossref","unstructured":"Ambrosio L., Fusco N. and Pallara D., Functions of Bounded Variation and Free Discontinuity Problems, Oxford Math. Monogr., Clarendon Press, Oxford, 2000.","DOI":"10.1093\/oso\/9780198502456.001.0001"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_004_w2aab3b7e1734b1b6b1ab2b1b4Aa","unstructured":"Ambrosio L., Mortola S. and Tortorelli V. M., Functionals with linear growth defined on vector valued BV functions, J. Math. Pures Appl. (9) 70 (1991), 269\u2013323."},{"key":"2023033112444858234_j_cmam-2016-0014_ref_005_w2aab3b7e1734b1b6b1ab2b1b5Aa","doi-asserted-by":"crossref","unstructured":"Andreu-Vaillo F., Caselles V. and Maz\u00f3n J. M., Parabolic Quasilinear Equations Minimizing Linear Growth Functionals, Progr. Math. 223, Birkh\u00e4user, Basel, 2004.","DOI":"10.1007\/978-3-0348-7928-6"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_006_w2aab3b7e1734b1b6b1ab2b1b6Aa","doi-asserted-by":"crossref","unstructured":"Attouch H., Buttazzo G. and Michaille G., Variational Analysis in Sobolev and BV Spaces, MPS\/SIAM Ser. Optim. 6, Mathematical Programming Society, Philadelphia, 2006.","DOI":"10.1137\/1.9780898718782"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_007_w2aab3b7e1734b1b6b1ab2b1b7Aa","doi-asserted-by":"crossref","unstructured":"Bartels S., Total variation minimization with finite elements: Convergence and iterative solution, SIAM J. Numer. Anal. 50 (2012), 1162\u20131180.","DOI":"10.1137\/11083277X"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_008_w2aab3b7e1734b1b6b1ab2b1b8Aa","doi-asserted-by":"crossref","unstructured":"Bartels S., Broken Sobolev space iteration for total variation regularized minimization problems, IMA J. Numer. Anal. (2015), 10.1093\/imanum\/drv023.","DOI":"10.1093\/imanum\/drv023"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_009_w2aab3b7e1734b1b6b1ab2b1b9Aa","doi-asserted-by":"crossref","unstructured":"Bartels S., Numerical Methods for Nonlinear Partial Differential Equations, Springer, Heidelberg, 2015.","DOI":"10.1007\/978-3-319-13797-1"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_010_w2aab3b7e1734b1b6b1ab2b1c10Aa","doi-asserted-by":"crossref","unstructured":"Bartels S., Mielke A. and Roubi\u010dek T., Quasi-static small-strain plasticity in the limit of vanishing Hardening and its numerical approximation, SIAM J. Numer. Anal. 50 (2012), no. 2, 951\u2013976.","DOI":"10.1137\/100819205"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_011_w2aab3b7e1734b1b6b1ab2b1c11Aa","doi-asserted-by":"crossref","unstructured":"Bartels S., Nochetto R. H. and Salgado A. J., Discrete total variation flows without regularization, SIAM J. Numer. Anal. 52 (2014), 363\u2013385.","DOI":"10.1137\/120901544"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_012_w2aab3b7e1734b1b6b1ab2b1c12Aa","doi-asserted-by":"crossref","unstructured":"Beck A. and Teboulle M., A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci. 2 (2009), no. 1, 183\u2013202.","DOI":"10.1137\/080716542"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_013_w2aab3b7e1734b1b6b1ab2b1c13Aa","doi-asserted-by":"crossref","unstructured":"Benamou J.-D. and Carlier G., Augmented Lagrangian methods for transport optimization, mean field games and degenerate elliptic equations, J. Optim. Theory Appl. 167 (2015), 1\u201326.","DOI":"10.1007\/s10957-015-0725-9"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_014_w2aab3b7e1734b1b6b1ab2b1c14Aa","doi-asserted-by":"crossref","unstructured":"Bewersdorff J., Algebra f\u00fcr Einsteiger, 5th ed., Springer, Heidelberg, 2013.","DOI":"10.1007\/978-3-658-02262-4"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_015_w2aab3b7e1734b1b6b1ab2b1c15Aa","doi-asserted-by":"crossref","unstructured":"Bildhauer M. and Fuchs M., Convex variational problems with linear growth, Geometric Analysis and Nonlinear Partial Differential Equations, Springer, Berlin (2003), 327\u2013344.","DOI":"10.1007\/978-3-642-55627-2_18"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_016_w2aab3b7e1734b1b6b1ab2b1c16Aa","doi-asserted-by":"crossref","unstructured":"Bildhauer M. and Fuchs M., A variational approach to the denoising of images based on different variants of the TV-regularization, Appl. Math. Optim. 66 (2012), 331\u2013361.","DOI":"10.1007\/s00245-012-9174-0"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_017_w2aab3b7e1734b1b6b1ab2b1c17Aa","doi-asserted-by":"crossref","unstructured":"Bregman L. M., The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming, USSR Comput. Math. Math. Phys. 7 (1967), 200\u2013217.","DOI":"10.1016\/0041-5553(67)90040-7"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_018_w2aab3b7e1734b1b6b1ab2b1c18Aa","doi-asserted-by":"crossref","unstructured":"Chambolle A., An algorithm for total variation minimization and applications, J. Math. Imaging Vision 20 (2004), 89\u201397.","DOI":"10.1023\/B:JMIV.0000011321.19549.88"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_019_w2aab3b7e1734b1b6b1ab2b1c19Aa","doi-asserted-by":"crossref","unstructured":"Chambolle A. and Lions P.-L., Image recovery via total variation minimization and related problems, Numer. Math. 76 (1997), 167\u2013188.","DOI":"10.1007\/s002110050258"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_020_w2aab3b7e1734b1b6b1ab2b1c20Aa","doi-asserted-by":"crossref","unstructured":"Chambolle A. and Pock T., A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vision 40 (2011), 120\u2013145.","DOI":"10.1007\/s10851-010-0251-1"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_021_w2aab3b7e1734b1b6b1ab2b1c21Aa","doi-asserted-by":"crossref","unstructured":"Chambolle A. and Pock T., A remark on accelerated block coordinate descent for computing the proximity operators of a sum of convex functions, SIAM J. Comput. Math. 1 (2015), 29\u201354.","DOI":"10.5802\/smai-jcm.3"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_022_w2aab3b7e1734b1b6b1ab2b1c22Aa","doi-asserted-by":"crossref","unstructured":"Chan R. H. and Liang H.-X., Half-quadratic algorithm for \u2113p$\\ell_{p}$-\u2113q$\\ell_{q}$ problems with applications to TV-\u21131$\\ell_{1}$ image restoration and compressive sensing, Efficient Algorithms for Global Optimization Methods in Computer Vision, Lecture Notes in Comput. Sci. 8293, Springer, Berlin (2014), 78\u2013103.","DOI":"10.1007\/978-3-642-54774-4_4"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_023_w2aab3b7e1734b1b6b1ab2b1c23Aa","doi-asserted-by":"crossref","unstructured":"Chan T. F., Golub G. H. and Mulet P., A nonlinear primal-dual method for total variation-based image restoration, SIAM J. Sci. Comput. 20 (1999), 1964\u20131977.","DOI":"10.1137\/S1064827596299767"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_024_w2aab3b7e1734b1b6b1ab2b1c24Aa","doi-asserted-by":"crossref","unstructured":"Chan T. F. and Mulet P., On the convergence of the lagged diffusivity fixed point method in total variation image restoration, SIAM J. Numer. Anal. 36 (1999), 354\u2013367.","DOI":"10.1137\/S0036142997327075"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_025_w2aab3b7e1734b1b6b1ab2b1c25Aa","doi-asserted-by":"crossref","unstructured":"Clason C. and Kunisch K., A duality-based approach to elliptic control problems in non-reflexive Banach spaces, ESAIM Control Optim. Calc. Var. 17 (2011), 243\u2013266.","DOI":"10.1051\/cocv\/2010003"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_026_w2aab3b7e1734b1b6b1ab2b1c26Aa","doi-asserted-by":"crossref","unstructured":"Conti S., Ginster J. and Rumpf M., A BV functional and its relaxation for joint motion estimation and image sequence recovery, ESAIM Math. Model. Numer. Anal. 49 (2015), no. 5, 1463\u20131487.","DOI":"10.1051\/m2an\/2015036"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_027_w2aab3b7e1734b1b6b1ab2b1c27Aa","doi-asserted-by":"crossref","unstructured":"Dal Maso G., DeSimone A. and Mora M. G., Quasistatic evolution problems for linearly elastic-perfectly plastic materials, Arch. Ration. Mech. Anal. 180 (2006), 237\u2013291.","DOI":"10.1007\/s00205-005-0407-0"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_028_w2aab3b7e1734b1b6b1ab2b1c28Aa","doi-asserted-by":"crossref","unstructured":"Darbon J. and Sigelle M., A fast and exact algorithm for total variation minimization, Pattern Recognition and Image Analysis, Lecture Notes in Comput. Sci., Springer, Berlin (2005), 351\u2013359.","DOI":"10.1007\/11492429_43"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_029_w2aab3b7e1734b1b6b1ab2b1c29Aa","doi-asserted-by":"crossref","unstructured":"Dobson D. C. and Vogel C. R., Convergence of an iterative method for total variation denoising, SIAM J. Numer. Anal. 34 (1997), no. 5, 1779\u20131791.","DOI":"10.1137\/S003614299528701X"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_030_w2aab3b7e1734b1b6b1ab2b1c30Aa","doi-asserted-by":"crossref","unstructured":"Eckstein J. and Bertsekas D. P., On the Douglas\u2013Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Program. 55 (1992), 293\u2013318.","DOI":"10.1007\/BF01581204"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_031_w2aab3b7e1734b1b6b1ab2b1c31Aa","doi-asserted-by":"crossref","unstructured":"Ekeland I. and T\u00e9mam R., Convex Analysis and Variational Problems, Classics Appl. Math. 28, Society for Industrial and Applied Mathematics, Philadelphia, 1999.","DOI":"10.1137\/1.9781611971088"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_032_w2aab3b7e1734b1b6b1ab2b1c32Aa","doi-asserted-by":"crossref","unstructured":"Elliott C. M. and Smitheman S. A., Numerical analysis of the tv regularization and H-1${H^{-1}}$ fidelity model for decomposing an image into cartoon plus texture, IMA J. Numer. Anal. 29 (2009), 651\u2013689.","DOI":"10.1093\/imanum\/drn025"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_033_w2aab3b7e1734b1b6b1ab2b1c33Aa","doi-asserted-by":"crossref","unstructured":"Feng X. and Prohl A., Analysis of total variation flow and its finite element approximations, ESAIM Math. Model. Numer. Anal. 37 (2003), 533\u2013556.","DOI":"10.1051\/m2an:2003041"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_034_w2aab3b7e1734b1b6b1ab2b1c34Aa","unstructured":"Fortin M. and Glowinski R., Augmented Lagrangian Methods, Stud. Math. Appl. 15, North-Holland, Amsterdam, 1983."},{"key":"2023033112444858234_j_cmam-2016-0014_ref_035_w2aab3b7e1734b1b6b1ab2b1c35Aa","doi-asserted-by":"crossref","unstructured":"Glowinski R. and Le Tallec P., Augmented Lagrangians and Operator-Splitting Methods in Nonlinear Mechanics, SIAM, Philadelphia, 1989.","DOI":"10.1137\/1.9781611970838"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_036_w2aab3b7e1734b1b6b1ab2b1c36Aa","doi-asserted-by":"crossref","unstructured":"Goldfarb D. and Yin W., Second-order cone programming methods for total variation-based image restoration, SIAM J. Sci. Comput. 27 (2005), 622\u2013645.","DOI":"10.1137\/040608982"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_037_w2aab3b7e1734b1b6b1ab2b1c37Aa","doi-asserted-by":"crossref","unstructured":"Goldstein T., O\u2019Donoghue B., Setzer S. and Baraniuk R., Fast alternating direction optimization methods, SIAM J. Imaging Sci. 7 (2014), 1588\u20131623.","DOI":"10.1137\/120896219"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_038_w2aab3b7e1734b1b6b1ab2b1c38Aa","doi-asserted-by":"crossref","unstructured":"Goldstein T. and Osher S., The split Bregman method for L1 regularized problems, SIAM J. Imaging Sci. 2 (2009), 323\u2013343.","DOI":"10.1137\/080725891"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_039_w2aab3b7e1734b1b6b1ab2b1c39Aa","doi-asserted-by":"crossref","unstructured":"G\u00fcler O., Foundations of Optimization, Grad. Texts in Math. 258, Springer, New York, 2010.","DOI":"10.1007\/978-0-387-68407-9"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_040_w2aab3b7e1734b1b6b1ab2b1c40Aa","doi-asserted-by":"crossref","unstructured":"Hinterm\u00fcller M., Ito K. and Kunisch K., The primal-dual active set strategy as a semismooth newton method, SIAM J. Optim. 13 (2003), 865\u2013888.","DOI":"10.1137\/S1052623401383558"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_041_w2aab3b7e1734b1b6b1ab2b1c41Aa","doi-asserted-by":"crossref","unstructured":"Hinterm\u00fcller M. and Kunisch K., Total bounded variation regularization as a bilaterally constrained optimization method, SIAM J. Appl. Math. 64 (2004), 1311\u20131333.","DOI":"10.1137\/S0036139903422784"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_042_w2aab3b7e1734b1b6b1ab2b1c42Aa","doi-asserted-by":"crossref","unstructured":"Nesterov Y., Smooth minimization of non-smooth functions, Math. Program. 103 (2005), 127\u2013152.","DOI":"10.1007\/s10107-004-0552-5"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_043_w2aab3b7e1734b1b6b1ab2b1c43Aa","doi-asserted-by":"crossref","unstructured":"Papadakis N., Peyr\u00e9 G. and Oudet E., Optimal transport with proximal splitting, SIAM J. Imaging Sci. 7 (2014), 212\u2013238.","DOI":"10.1137\/130920058"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_044_w2aab3b7e1734b1b6b1ab2b1c44Aa","doi-asserted-by":"crossref","unstructured":"Rockafellar R. T., Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14 (1976), 877\u2013898.","DOI":"10.1137\/0314056"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_045_w2aab3b7e1734b1b6b1ab2b1c45Aa","doi-asserted-by":"crossref","unstructured":"Rudin L. I., Osher S. and Fatemi E., Nonlinear total variation based noise removal algorithms, Phys. D 60 (1992), 259\u2013268.","DOI":"10.1016\/0167-2789(92)90242-F"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_046_w2aab3b7e1734b1b6b1ab2b1c46Aa","doi-asserted-by":"crossref","unstructured":"Thomas M., Quasistatic damage evolution with spatial BV-regularization, Discrete Contin. Dyn. Syst. Ser. S 6 (2013), 235\u2013255.","DOI":"10.3934\/dcdss.2013.6.235"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_047_w2aab3b7e1734b1b6b1ab2b1c47Aa","doi-asserted-by":"crossref","unstructured":"Tseng P., Applications of a splitting algorithm to decomposition in convex programming and variational inequalities, SIAM J. Control Optim. 29 (1991), 119\u2013138.","DOI":"10.1137\/0329006"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_048_w2aab3b7e1734b1b6b1ab2b1c48Aa","doi-asserted-by":"crossref","unstructured":"Vogel C. R. and Oman M. E., Iterative methods for total variation denoising, SIAM J. Sci. Comput. 17 (1996), 227\u2013238.","DOI":"10.1137\/0917016"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_049_w2aab3b7e1734b1b6b1ab2b1c49Aa","doi-asserted-by":"crossref","unstructured":"Wang J. and Lucier B. J., Error bounds for finite-difference methods for Rudin\u2013Osher\u2013Fatemi image smoothing, SIAM J. Numer. Anal. 49 (2011), 845\u2013868.","DOI":"10.1137\/090769594"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_050_w2aab3b7e1734b1b6b1ab2b1c50Aa","doi-asserted-by":"crossref","unstructured":"Wang Y., Yang J., Yin W. and Zhang Y., A new alternating minimization algorithm for total variation image reconstruction, SIAM J. Imaging Sci. 1 (2008), 248\u2013272.","DOI":"10.1137\/080724265"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_051_w2aab3b7e1734b1b6b1ab2b1c51Aa","doi-asserted-by":"crossref","unstructured":"Wu C. and Tai X.-C., Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and higher order models, SIAM J. Imaging Sci. 3 (2010), 300\u2013339.","DOI":"10.1137\/090767558"},{"key":"2023033112444858234_j_cmam-2016-0014_ref_052_w2aab3b7e1734b1b6b1ab2b1c52Aa","unstructured":"Zhu M., Fast numerical algorithms for total variation based image restoration, Ph.D. thesis, University of California, Los Angeles, 2008."}],"container-title":["Computational Methods in Applied Mathematics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.degruyter.com\/view\/journals\/cmam\/16\/3\/article-p361.xml","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.degruyter.com\/document\/doi\/10.1515\/cmam-2016-0014\/xml","content-type":"application\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.degruyter.com\/document\/doi\/10.1515\/cmam-2016-0014\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,15]],"date-time":"2024-06-15T18:09:46Z","timestamp":1718474986000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.degruyter.com\/document\/doi\/10.1515\/cmam-2016-0014\/html"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016,4,13]]},"references-count":52,"journal-issue":{"issue":"3","published-online":{"date-parts":[[2016,3,10]]},"published-print":{"date-parts":[[2016,7,1]]}},"alternative-id":["10.1515\/cmam-2016-0014"],"URL":"http:\/\/dx.doi.org\/10.1515\/cmam-2016-0014","relation":{},"ISSN":["1609-9389","1609-4840"],"issn-type":[{"value":"1609-9389","type":"electronic"},{"value":"1609-4840","type":"print"}],"subject":[],"published":{"date-parts":[[2016,4,13]]}}}