{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,27]],"date-time":"2024-08-27T05:10:00Z","timestamp":1724735400853},"reference-count":76,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2018,8,29]],"date-time":"2018-08-29T00:00:00Z","timestamp":1535500800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["21403002","31601074"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["BMC Bioinformatics"],"published-print":{"date-parts":[[2018,12]]},"DOI":"10.1186\/s12859-018-2321-0","type":"journal-article","created":{"date-parts":[[2018,8,29]],"date-time":"2018-08-29T17:34:07Z","timestamp":1535564047000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":97,"title":["PseUI: Pseudouridine sites identification based on RNA sequence information"],"prefix":"10.1186","volume":"19","author":[{"given":"Jingjing","family":"He","sequence":"first","affiliation":[]},{"given":"Ting","family":"Fang","sequence":"additional","affiliation":[]},{"given":"Zizheng","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Bei","family":"Huang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1967-2806","authenticated-orcid":false,"given":"Xiaolei","family":"Zhu","sequence":"additional","affiliation":[]},{"given":"Yi","family":"Xiong","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2018,8,29]]},"reference":[{"issue":"Database issue","key":"2321_CR1","doi-asserted-by":"publisher","first-page":"D195","DOI":"10.1093\/nar\/gkq1028","volume":"39","author":"WA Cantara","year":"2011","unstructured":"Cantara WA, Crain PF, Rozenski J, Mccloskey JA, Harris KA, Zhang X, Vendeix FA, Fabris D, Agris PF. The RNA modification database, RNAMDB: 2011 update. Nucleic Acids Res. 2011;39(Database issue):D195.","journal-title":"Nucleic Acids Res"},{"issue":"Database issue","key":"2321_CR2","doi-asserted-by":"publisher","first-page":"D145","DOI":"10.1093\/nar\/gkj084","volume":"34","author":"S Duninhorkawicz","year":"2006","unstructured":"Duninhorkawicz S, Czerwoniec A, Gajda MJ, Feder M, Grosjean H, Bujnicki JM. MODOMICS: a database of RNA modification pathways. Nucleic Acids Res. 2006;34(Database issue):D145.","journal-title":"Nucleic Acids Res"},{"issue":"11","key":"2321_CR3","doi-asserted-by":"publisher","first-page":"1371","DOI":"10.1261\/rna.5520403","volume":"9","author":"I Behmansmant","year":"2003","unstructured":"Behmansmant I, Urban A, Ma X, Yu YT, Motorin Y, Branlant C. The Saccharomyces cerevisiae U2 snRNA:pseudouridine-synthase Pus7p is a novel multisite-multisubstrate RNA:psi-synthase also acting on tRNAs. Rna-a Publication of the Rna Society. 2003;9(11):1371.","journal-title":"Rna-a Publication of the Rna Society"},{"issue":"15","key":"2321_CR4","doi-asserted-by":"publisher","first-page":"4770","DOI":"10.1093\/emboj\/16.15.4770","volume":"16","author":"C Bousquet-Antonelli","year":"1997","unstructured":"Bousquet-Antonelli C, Henry Y, G\u00e9lugne JP, Caizergues-Ferrer M, Kiss T. A small nucleolar RNP protein is required for pseudouridylation of eukaryotic ribosomal RNAs. EMBO J. 1997;16(15):4770\u20136.","journal-title":"EMBO J"},{"issue":"4","key":"2321_CR5","doi-asserted-by":"publisher","first-page":"210","DOI":"10.1016\/j.tibs.2013.01.002","volume":"38","author":"Y Junhui","year":"2013","unstructured":"Junhui Y, Tao Y. RNA pseudouridylation: new insights into an old modification. Trends Biochem Sci. 2013;38(4):210.","journal-title":"Trends Biochem Sci"},{"key":"2321_CR6","doi-asserted-by":"crossref","unstructured":"Grosjean H. DNA and RNA modification enzymes: Structure, Mechanism, Function and Evolution. Austin: Landes Biosciences; 2009.","DOI":"10.1201\/9781498713153"},{"key":"2321_CR7","unstructured":"Ofengand J, Fournier MJ: The pseudouridine residues of rRNA: Number, location, biosynthesis, and function. 1998."},{"issue":"8","key":"2321_CR8","doi-asserted-by":"publisher","first-page":"1889","DOI":"10.1093\/emboj\/cdg191","volume":"22","author":"X Ma","year":"2003","unstructured":"Ma X, Zhao X, Yu YT. Pseudouridylation (\u03a8) of U2 snRNA in S.Cerevisiae is catalyzed by an RNA-independent mechanism. EMBO J. 2003;22(8):1889.","journal-title":"EMBO J"},{"issue":"6","key":"2321_CR9","doi-asserted-by":"publisher","first-page":"833","DOI":"10.1017\/S1355838201002308","volume":"7","author":"MI Newby","year":"2001","unstructured":"Newby MI, Greenbaum NL. A conserved pseudouridine modification in eukaryotic U2 snRNA induces a change in branch-site architecture. Rna-a Publication of the Rna Society. 2001;7(6):833\u201345.","journal-title":"Rna-a Publication of the Rna Society"},{"issue":"7525","key":"2321_CR10","doi-asserted-by":"publisher","first-page":"143","DOI":"10.1038\/nature13802","volume":"515","author":"TM Carlile","year":"2014","unstructured":"Carlile TM, Rojasduran MF, Zinshteyn B, Shin H, Bartoli KM, Gilbert WV. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature. 2014;515(7525):143\u20136.","journal-title":"Nature"},{"issue":"10","key":"2321_CR11","doi-asserted-by":"publisher","first-page":"e110799","DOI":"10.1371\/journal.pone.0110799","volume":"9","author":"AF Lovejoy","year":"2014","unstructured":"Lovejoy AF, Riordan DP, Brown PO. Transcriptome-wide mapping of Pseudouridines: Pseudouridine synthases modify specific mRNAs in S. Cerevisiae. PLoS One. 2014;9(10):e110799.","journal-title":"PLoS One"},{"issue":"1","key":"2321_CR12","doi-asserted-by":"publisher","first-page":"148","DOI":"10.1016\/j.cell.2014.08.028","volume":"159","author":"S Schwartz","year":"2014","unstructured":"Schwartz S, Bernstein DA, Mumbach MR, Jovanovic M, Herbst RH, Le\u00f3nricardo BX, Engreitz JM, Guttman M, Satija R, Lander ES. Transcriptome-wide mapping reveals widespread dynamic regulated pseudouridylation of ncRNA and mRNA. Cell. 2014;159(1):148.","journal-title":"Cell"},{"issue":"8","key":"2321_CR13","doi-asserted-by":"publisher","first-page":"592","DOI":"10.1038\/nchembio.1836","volume":"11","author":"X Li","year":"2015","unstructured":"Li X, Zhu P, Ma S, Song J, Bai J, Sun F, Yi C. Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat Chem Biol. 2015;11(8):592.","journal-title":"Nat Chem Biol"},{"issue":"7","key":"2321_CR14","first-page":"e332","volume":"5","author":"C Wei","year":"2016","unstructured":"Wei C, Hua T, Jing Y, Hao L, Chou KC. iRNA-PseU: identifying RNA pseudouridine sites. Mol Ther Nucleic Acids. 2016;5(7):e332.","journal-title":"Mol Ther Nucleic Acids"},{"issue":"20","key":"2321_CR15","doi-asserted-by":"publisher","first-page":"3362","DOI":"10.1093\/bioinformatics\/btv366","volume":"31","author":"YH Li","year":"2015","unstructured":"Li YH, Zhang G, Cui Q. PPUS: a web server to predict PUS-specific pseudouridine sites. Bioinformatics. 2015;31(20):3362\u20134.","journal-title":"Bioinformatics"},{"key":"2321_CR16","doi-asserted-by":"crossref","unstructured":"Li GQ, Liu Z, Shen HB, Yu DJ: TargetM6A: identifying N6-methyladenosine sites from RNA sequences via position-specific nucleotide propensities and a support vector machine. IEEE Transactions on Nanobioscience 2016, PP(99):1\u20131.","DOI":"10.1109\/TNB.2016.2599115"},{"key":"2321_CR17","first-page":"1","volume-title":"Signal processing conference, 2005 European","author":"D Ververidis","year":"2010","unstructured":"Ververidis D, Kotropoulos C. Sequential forward feature selection with low computational cost. In: Signal processing conference, 2005 European; 2010. p. 1\u20134."},{"key":"2321_CR18","first-page":"203","volume-title":"International conference on digital image computing techniques and applications","author":"L Wang","year":"2012","unstructured":"Wang L, Shen C, Hartley R. On the optimality of sequential forward feature selection using class Separability measure. In: International conference on digital image computing techniques and applications; 2012. p. 203\u20138."},{"key":"2321_CR19","doi-asserted-by":"publisher","first-page":"47","DOI":"10.1016\/j.jtbi.2015.04.011","volume":"377","author":"J Jia","year":"2015","unstructured":"Jia J, Liu Z, Xiao X, Liu B, Chou KC. iPPI-Esml: an ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical properties and wavelet transforms into PseAAC. J Theor Biol. 2015;377:47\u201356.","journal-title":"J Theor Biol"},{"issue":"3","key":"2321_CR20","doi-asserted-by":"crossref","first-page":"341","DOI":"10.1093\/bioinformatics\/btw644","volume":"33","author":"X Cheng","year":"2017","unstructured":"Cheng X, Zhao SG, Xiao X, Chou KC. iATC-mISF: a multi-label classifier for predicting the classes of anatomical therapeutic chemicals. Bioinformatics. 2017;33(3):341\u20136.","journal-title":"Bioinformatics"},{"key":"2321_CR21","doi-asserted-by":"publisher","first-page":"155","DOI":"10.1016\/j.omtn.2017.03.006","volume":"7","author":"P Feng","year":"2017","unstructured":"Feng P, Ding H, Yang H, Chen W, Lin H, Chou KC. iRNA-PseColl: identifying the occurrence sites of different RNA modifications by incorporating collective effects of nucleotides into PseKNC. Mol Ther Nucleic Acids. 2017;7:155\u201363.","journal-title":"Mol Ther Nucleic Acids"},{"issue":"1","key":"2321_CR22","doi-asserted-by":"publisher","first-page":"35","DOI":"10.1093\/bioinformatics\/btw539","volume":"33","author":"B Liu","year":"2017","unstructured":"Liu B, Wang S, Long R, Chou KC. iRSpot-EL: identify recombination spots with an ensemble learning approach. Bioinformatics. 2017;33(1):35\u201341.","journal-title":"Bioinformatics"},{"key":"2321_CR23","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.jtbi.2017.01.019","volume":"417","author":"Q Xu","year":"2017","unstructured":"Xu Q, Xiong Y, Dai H, Kumari KM, Xu Q, Ou HY, Wei DQ. PDC-SGB: prediction of effective drug combinations using a stochastic gradient boosting algorithm. J Theor Biol. 2017;417:1\u20137.","journal-title":"J Theor Biol"},{"issue":"1","key":"2321_CR24","doi-asserted-by":"publisher","first-page":"236","DOI":"10.1016\/j.jtbi.2010.12.024","volume":"273","author":"KC Chou","year":"2011","unstructured":"Chou KC. Some remarks on protein attribute prediction and pseudo amino acid composition. J Theor Biol. 2011;273(1):236\u201347.","journal-title":"J Theor Biol"},{"issue":"Database issue","key":"2321_CR25","doi-asserted-by":"publisher","first-page":"D259","DOI":"10.1093\/nar\/gkv1036","volume":"44","author":"WJ Sun","year":"2016","unstructured":"Sun WJ, Li JH, Liu S, Wu J, Zhou H, Qu LH, Yang JH. RMBase: a resource for decoding the landscape of RNA modifications from high-throughput sequencing data. Nucleic Acids Res. 2016;44(Database issue):D259\u201365.","journal-title":"Nucleic Acids Res"},{"issue":"3","key":"2321_CR26","doi-asserted-by":"publisher","first-page":"218","DOI":"10.2174\/1573406411666141229162834","volume":"11","author":"KC Chou","year":"2015","unstructured":"Chou KC. Impacts of bioinformatics to medicinal chemistry. Med Chem. 2015;11(3):218\u201334.","journal-title":"Med Chem"},{"issue":"3","key":"2321_CR27","doi-asserted-by":"publisher","first-page":"246","DOI":"10.1002\/prot.1035","volume":"43","author":"KC Chou","year":"2001","unstructured":"Chou KC. Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins. 2001;43(3):246\u201355.","journal-title":"Proteins"},{"issue":"1","key":"2321_CR28","doi-asserted-by":"publisher","first-page":"10","DOI":"10.1093\/bioinformatics\/bth466","volume":"21","author":"KC Chou","year":"2005","unstructured":"Chou KC. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics. 2005;21(1):10\u20139.","journal-title":"Bioinformatics"},{"issue":"10","key":"2321_CR29","doi-asserted-by":"publisher","first-page":"2620","DOI":"10.1039\/C5MB00155B","volume":"11","author":"W Chen","year":"2015","unstructured":"Chen W, Lin H, Chou KC. Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences. Mol BioSyst. 2015;11(10):2620\u201334.","journal-title":"Mol BioSyst"},{"issue":"W1","key":"2321_CR30","doi-asserted-by":"publisher","first-page":"W65","DOI":"10.1093\/nar\/gkv458","volume":"43","author":"B Liu","year":"2015","unstructured":"Liu B, Liu F, Wang X, Chen J, Fang L, Chou KC. Pse-in-one: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Res. 2015;43(W1):W65\u201371.","journal-title":"Nucleic Acids Res"},{"issue":"17","key":"2321_CR31","doi-asserted-by":"publisher","first-page":"i364","DOI":"10.1093\/bioinformatics\/btu441","volume":"30","author":"J Brayet","year":"2014","unstructured":"Brayet J, Zehraoui F, Jeansonleh L, Israeli D, Tahi F. Towards a piRNA prediction using multiple kernel fusion and support vector machine. Bioinformatics. 2014;30(17):i364.","journal-title":"Bioinformatics"},{"key":"2321_CR32","doi-asserted-by":"publisher","first-page":"88","DOI":"10.1016\/j.jtbi.2015.09.014","volume":"387","author":"E Kamil","year":"2015","unstructured":"Kamil E, Hashim M, Rosni A. Rare k-mer DNA: identification of sequence motifs and prediction of CpG Island and promoter. J Theor Biol. 2015;387:88\u2013100.","journal-title":"J Theor Biol"},{"issue":"1","key":"2321_CR33","doi-asserted-by":"publisher","first-page":"205","DOI":"10.1186\/s12859-015-0647-4","volume":"16","author":"H Vinje","year":"2015","unstructured":"Vinje H, Liland KH, Alm\u00f8y T, Snipen L. Comparing K-mer based methods for improved classification of 16S sequences. BMC Bioinformatics. 2015;16(1):205.","journal-title":"BMC Bioinformatics"},{"issue":"11","key":"2321_CR34","doi-asserted-by":"publisher","first-page":"3307","DOI":"10.1039\/C6MB00471G","volume":"12","author":"P Feng","year":"2016","unstructured":"Feng P, Ding H, Chen W, Lin H. Identifying RNA 5-methylcytosine sites via pseudo nucleotide compositions. Mol BioSyst. 2016;12(11):3307.","journal-title":"Mol BioSyst"},{"key":"2321_CR35","first-page":"11):740506","volume":"2014","author":"P Feng","year":"2014","unstructured":"Feng P, Jiang N, Liu N. Prediction of DNase I hypersensitive sites by using Pseudo nucleotide compositions. Thescientificworldjournal. 2014;2014:11):740506.","journal-title":"Thescientificworldjournal"},{"issue":"3","key":"2321_CR36","doi-asserted-by":"publisher","first-page":"362","DOI":"10.1093\/bioinformatics\/btv604","volume":"32","author":"B Liu","year":"2016","unstructured":"Liu B, Fang L, Long R, Lan X, Chou KC. iEnhancer-2L: a two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition. Bioinformatics. 2016;32(3):362.","journal-title":"Bioinformatics"},{"issue":"1","key":"2321_CR37","doi-asserted-by":"publisher","first-page":"119","DOI":"10.1093\/bioinformatics\/btu602","volume":"31","author":"W Chen","year":"2015","unstructured":"Chen W, Zhang X, Brooker J, Lin H, Zhang L, Chou KC. PseKNC-general: a cross-platform package for generating various modes of pseudo nucleotide compositions. Bioinformatics. 2015;31(1):119\u201320.","journal-title":"Bioinformatics"},{"issue":"1","key":"2321_CR38","doi-asserted-by":"publisher","first-page":"53","DOI":"10.1016\/j.ab.2014.04.001","volume":"456","author":"W Chen","year":"2014","unstructured":"Chen W, Lei TY, Jin DC, Lin H, Chou KC. PseKNC: a flexible web server for generating pseudo K-tuple nucleotide composition. Anal Biochem. 2014;456(1):53.","journal-title":"Anal Biochem"},{"issue":"8","key":"2321_CR39","doi-asserted-by":"publisher","first-page":"405","DOI":"10.1093\/protein\/gzm035","volume":"20","author":"YR Tang","year":"2007","unstructured":"Tang YR, Chen YZ, Canchaya CA, Zhang Z. GANNPhos: a new phosphorylation site predictor based on a genetic algorithm integrated neural network. Protein Engineering Design & Selection Peds. 2007;20(8):405\u201312.","journal-title":"Protein Engineering Design & Selection Peds"},{"issue":"14","key":"2321_CR40","doi-asserted-by":"publisher","first-page":"1983","DOI":"10.1093\/bioinformatics\/btu167","volume":"30","author":"AM Thangakani","year":"2014","unstructured":"Thangakani AM, Kumar S, Nagarajan R, Velmurugan D, Gromiha MM. GAP: towards almost 100 percent prediction for \u03b2-strand-mediated aggregating peptides with distinct morphologies. Bioinformatics. 2014;30(14):1983\u201390.","journal-title":"Bioinformatics"},{"key":"2321_CR41","doi-asserted-by":"publisher","first-page":"10","DOI":"10.1016\/j.jtbi.2015.04.016","volume":"379","author":"Y Xu","year":"2015","unstructured":"Xu Y, Ding YX, Ding J, Wu LY, Deng NY. Phogly\u2013PseAAC: prediction of lysine phosphoglycerylation in proteins incorporating with position-specific propensity. J Theor Biol. 2015;379:10\u20135.","journal-title":"J Theor Biol"},{"issue":"23","key":"2321_CR42","doi-asserted-by":"crossref","first-page":"16938","DOI":"10.1016\/S0021-9258(19)85285-7","volume":"268","author":"KC Chou","year":"1993","unstructured":"Chou KC. A vectorized sequence-coupling model for predicting HIV protease cleavage sites in proteins. J Biol Chem. 1993;268(23):16938\u201348.","journal-title":"J Biol Chem"},{"issue":"9","key":"2321_CR43","doi-asserted-by":"publisher","first-page":"2671","DOI":"10.1002\/prot.23094","volume":"79","author":"X Zhu","year":"2011","unstructured":"Zhu X, Mitchell JC. KFC2: a knowledge-based hot spot prediction method based on interface solvation, atomic density, and plasticity features. Proteins. 2011;79(9):2671\u201383.","journal-title":"Proteins"},{"issue":"2","key":"2321_CR44","doi-asserted-by":"publisher","first-page":"509","DOI":"10.1002\/prot.22898","volume":"79","author":"Y Xiong","year":"2011","unstructured":"Xiong Y, Liu J, Wei DQ. An accurate feature-based method for identifying DNA-binding residues on protein surfaces. Proteins. 2011;79(2):509\u201317.","journal-title":"Proteins"},{"key":"2321_CR45","doi-asserted-by":"publisher","first-page":"69","DOI":"10.1016\/j.ab.2014.12.009","volume":"474","author":"Z Liu","year":"2015","unstructured":"Liu Z, Xiao X, Qiu WR, Chou KC. iDNA-methyl: identifying DNA methylation sites via pseudo trinucleotide composition. Anal Biochem. 2015;474:69.","journal-title":"Anal Biochem"},{"issue":"13","key":"2321_CR46","doi-asserted-by":"crossref","first-page":"16895","DOI":"10.18632\/oncotarget.7815","volume":"7","author":"C Wei","year":"2016","unstructured":"Wei C, Hui D, Feng P, Hao L, Chou KC. iACP: a sequence-based tool for identifying anticancer peptides. Oncotarget. 2016;7(13):16895.","journal-title":"Oncotarget"},{"key":"2321_CR47","doi-asserted-by":"publisher","first-page":"26","DOI":"10.1016\/j.ab.2015.08.021","volume":"490","author":"W Chen","year":"2015","unstructured":"Chen W, Feng P, Ding H, Lin H, Chou KC. iRNA-methyl: identifying N(6)-methyladenosine sites using pseudo nucleotide composition. Anal Biochem. 2015;490:26.","journal-title":"Anal Biochem"},{"key":"2321_CR48","doi-asserted-by":"publisher","first-page":"60","DOI":"10.1016\/j.ab.2015.12.017","volume":"497","author":"Z Liu","year":"2015","unstructured":"Liu Z, Xiao X, Yu DJ, Jia J, Qiu WR, Chou KC. pRNAm-PC: predicting N(6)-methyladenosine sites in RNA sequences via physical-chemical properties. Anal Biochem. 2015;497:60\u20137.","journal-title":"Anal Biochem"},{"issue":"3","key":"2321_CR49","doi-asserted-by":"publisher","first-page":"e4920","DOI":"10.1371\/journal.pone.0004920","volume":"4","author":"J Shao","year":"2009","unstructured":"Shao J, Dong X, Sau-Na T, Wang Y, Sai-Ming N. Computational identification of protein methylation sites through bi-profile Bayes feature extraction. PLoS One. 2009;4(3):e4920.","journal-title":"PLoS One"},{"issue":"6","key":"2321_CR50","doi-asserted-by":"publisher","first-page":"752","DOI":"10.1093\/bioinformatics\/btq043","volume":"26","author":"J Song","year":"2010","unstructured":"Song J, Tan H, Shen H, Mahmood K, Boyd SE, Webb GI, Akutsu T, Whisstock JC. Cascleave: towards more accurate prediction of caspase substrate cleavage sites. Bioinformatics. 2010;26(6):752\u201360.","journal-title":"Bioinformatics"},{"issue":"4","key":"2321_CR51","doi-asserted-by":"publisher","first-page":"778","DOI":"10.1016\/j.biochi.2011.01.013","volume":"93","author":"C Jia","year":"2011","unstructured":"Jia C, Liu T, Chang AK, Zhai Y. Prediction of mitochondrial proteins of malaria parasite using bi-profile Bayes feature extraction. Biochimie. 2011;93(4):778.","journal-title":"Biochimie"},{"issue":"6","key":"2321_CR52","doi-asserted-by":"publisher","first-page":"777","DOI":"10.1093\/bioinformatics\/btr021","volume":"27","author":"Y Wang","year":"2011","unstructured":"Wang Y, Zhang Q, Sun MA, Guo D. High-accuracy prediction of bacterial type III secreted effectors based on position-specific amino acid composition profiles. Bioinformatics. 2011;27(6):777.","journal-title":"Bioinformatics"},{"issue":"4","key":"2321_CR53","doi-asserted-by":"publisher","first-page":"275","DOI":"10.3109\/10409239509083488","volume":"30","author":"KC Chou","year":"1995","unstructured":"Chou KC, Zhang CT. Prediction of protein structural classes. Crc Critical Reviews in Biochemistry. 1995;30(4):275\u2013349.","journal-title":"Crc Critical Reviews in Biochemistry"},{"issue":"4","key":"2321_CR54","doi-asserted-by":"publisher","first-page":"441","DOI":"10.1207\/S15327906MBR3404_2","volume":"34","author":"JL Rodgers","year":"1999","unstructured":"Rodgers JL. The bootstrap, the jackknife, and the randomization test: a sampling taxonomy. Multivar Behav Res. 1999;34(4):441.","journal-title":"Multivar Behav Res"},{"issue":"3","key":"2321_CR55","doi-asserted-by":"publisher","first-page":"498","DOI":"10.1037\/0033-2909.116.3.498","volume":"116","author":"LI Dalgleish","year":"1994","unstructured":"Dalgleish LI. Discriminant analysis: statistical inference using the jackknife and bootstrap procedures. Psychol Bull. 1994;116(3):498\u2013508.","journal-title":"Psychol Bull"},{"issue":"2","key":"2321_CR56","doi-asserted-by":"publisher","first-page":"75","DOI":"10.1093\/protein\/14.2.75","volume":"14","author":"KC Chou","year":"2001","unstructured":"Chou KC. Using subsite coupling to predict signal peptides. Protein Eng. 2001;14(2):75.","journal-title":"Protein Eng"},{"key":"2321_CR57","doi-asserted-by":"publisher","DOI":"10.7717\/peerj.171","volume":"1","author":"Y Xu","year":"2013","unstructured":"Xu Y, Shao XJ, Wu LY, Deng NY, Chou KC. iSNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins. PeerJ. 2013;1:e171.","journal-title":"PeerJ"},{"issue":"6","key":"2321_CR58","doi-asserted-by":"publisher","first-page":"e68","DOI":"10.1093\/nar\/gks1450","volume":"41","author":"W Chen","year":"2013","unstructured":"Chen W, Feng PM, Lin H, Chou KC. iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition. Nucleic Acids Res. 2013;41(6):e68.","journal-title":"Nucleic Acids Res"},{"issue":"16","key":"2321_CR59","doi-asserted-by":"publisher","first-page":"2411","DOI":"10.1093\/bioinformatics\/btw186","volume":"32","author":"B Liu","year":"2016","unstructured":"Liu B, Long R, Chou KC. iDHS-EL: identifying DNase I hypersensitive sites by fusing three different modes of pseudo nucleotide composition into an ensemble learning framework. Bioinformatics. 2016;32(16):2411\u20138.","journal-title":"Bioinformatics"},{"issue":"20","key":"2321_CR60","doi-asserted-by":"publisher","first-page":"3116","DOI":"10.1093\/bioinformatics\/btw380","volume":"32","author":"WR Qiu","year":"2016","unstructured":"Qiu WR, Sun BQ, Xiao X, Xu ZC, Chou KC. iPTM-mLys: identifying multiple lysine PTM sites and their different types. Bioinformatics. 2016;32(20):3116\u201323.","journal-title":"Bioinformatics"},{"issue":"22","key":"2321_CR61","doi-asserted-by":"publisher","first-page":"3524","DOI":"10.1093\/bioinformatics\/btx476","volume":"33","author":"X Cheng","year":"2017","unstructured":"Cheng X, Zhao SG, Lin WZ, Xiao X, Chou KC. pLoc-mAnimal: predict subcellular localization of animal proteins with both single and multiple sites. Bioinformatics. 2017;33(22):3524.","journal-title":"Bioinformatics"},{"issue":"6","key":"2321_CR62","doi-asserted-by":"publisher","first-page":"1092","DOI":"10.1039\/c3mb25555g","volume":"9","author":"KC Chou","year":"2013","unstructured":"Chou KC. Some remarks on predicting multi-label attributes in molecular biosystems. Mol BioSyst. 2013;9(6):1092\u2013100.","journal-title":"Mol BioSyst"},{"issue":"8","key":"2321_CR63","doi-asserted-by":"publisher","first-page":"861","DOI":"10.1016\/j.patrec.2005.10.010","volume":"27","author":"T Fawcett","year":"2006","unstructured":"Fawcett T. An introduction to ROC analysis. Pattern Recogn Lett. 2006;27(8):861\u201374.","journal-title":"Pattern Recogn Lett"},{"issue":"21","key":"2321_CR64","doi-asserted-by":"publisher","first-page":"12961","DOI":"10.1093\/nar\/gku1019","volume":"42","author":"H Lin","year":"2014","unstructured":"Lin H, Deng EZ, Ding H, Chen W, Chou KC. iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition. Nucleic Acids Res. 2014;42(21):12961\u201372.","journal-title":"Nucleic Acids Res"},{"issue":"17","key":"2321_CR65","doi-asserted-by":"publisher","first-page":"2756","DOI":"10.1093\/bioinformatics\/btx302","volume":"33","author":"J Wang","year":"2017","unstructured":"Wang J, Yang B, Revote J, Leier A, Marquez-Lago TT, Webb G, Song J, Chou KC, Lithgow T. POSSUM: a bioinformatics toolkit for generating numerical sequence feature descriptors based on PSSM profiles. Bioinformatics. 2017;33(17):2756\u20138.","journal-title":"Bioinformatics"},{"issue":"4","key":"2321_CR66","doi-asserted-by":"publisher","first-page":"684","DOI":"10.1093\/bioinformatics\/btx670","volume":"34","author":"J Song","year":"2018","unstructured":"Song J, Li F, Leier A, Marquez-Lago TT, Akutsu T, Haffari G, Chou KC, Webb GI, Pike RN, Hancock J. PROSPERous: high-throughput prediction of substrate cleavage sites for 90 proteases with improved accuracy. Bioinformatics. 2018;34(4):684\u20137.","journal-title":"Bioinformatics"},{"issue":"9","key":"2321_CR67","doi-asserted-by":"publisher","first-page":"1448","DOI":"10.1093\/bioinformatics\/btx711","volume":"34","author":"X Cheng","year":"2018","unstructured":"Cheng X, Xiao X, Chou KC. pLoc-mHum: predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information. Bioinformatics. 2018;34(9):1448\u201356.","journal-title":"Bioinformatics"},{"issue":"21","key":"2321_CR68","doi-asserted-by":"publisher","first-page":"3331","DOI":"10.1093\/bioinformatics\/btx421","volume":"33","author":"E Noutahi","year":"2017","unstructured":"Noutahi E, Calderon V, Blanchette M, Lang FB, El-Mabrouk N. CoreTracker: accurate codon reassignment prediction, applied to mitochondrial genomes. Bioinformatics. 2017;33(21):3331\u20139.","journal-title":"Bioinformatics"},{"issue":"2","key":"2321_CR69","doi-asserted-by":"publisher","first-page":"556","DOI":"10.1093\/nar\/gkw1085","volume":"45","author":"M Leclercq","year":"2017","unstructured":"Leclercq M, Diallo AB, Blanchette M. Prediction of human miRNA target genes using computationally reconstructed ancestral mammalian sequences. Nucleic Acids Res. 2017;45(2):556\u201366.","journal-title":"Nucleic Acids Res"},{"issue":"1","key":"2321_CR70","doi-asserted-by":"publisher","first-page":"10","DOI":"10.1093\/bioinformatics\/btu595","volume":"31","author":"P Cingolani","year":"2015","unstructured":"Cingolani P, Sladek R, Blanchette M. BigDataScript: a scripting language for data pipelines. Bioinformatics. 2015;31(1):10\u20136.","journal-title":"Bioinformatics"},{"issue":"1","key":"2321_CR71","doi-asserted-by":"publisher","first-page":"14","DOI":"10.1186\/s12859-018-2009-5","volume":"19","author":"Y Qiao","year":"2018","unstructured":"Qiao Y, Xiong Y, Gao H, Zhu X, Chen P. Protein-protein interface hot spots prediction based on a hybrid feature selection strategy. BMC Bioinformatics. 2018;19(1):14.","journal-title":"BMC Bioinformatics"},{"issue":"12","key":"2321_CR72","doi-asserted-by":"publisher","first-page":"i18","DOI":"10.1093\/bioinformatics\/btw244","volume":"32","author":"Q Yuan","year":"2016","unstructured":"Yuan Q, Gao J, Wu D, Zhang S, Mamitsuka H, Zhu S. DrugE-rank: improving drug-target interaction prediction of new candidate drugs or targets by ensemble learning to rank. Bioinformatics. 2016;32(12):i18\u201327.","journal-title":"Bioinformatics"},{"issue":"18","key":"2321_CR73","doi-asserted-by":"publisher","first-page":"2853","DOI":"10.1093\/bioinformatics\/btw315","volume":"32","author":"S Sukumar","year":"2016","unstructured":"Sukumar S, Zhu X, Ericksen SS, Mitchell JC. DBSI server: DNA binding site identifier. Bioinformatics. 2016;32(18):2853\u20135.","journal-title":"Bioinformatics"},{"issue":"5","key":"2321_CR74","doi-asserted-by":"publisher","first-page":"707","DOI":"10.1093\/bioinformatics\/btu724","volume":"31","author":"X Zhu","year":"2015","unstructured":"Zhu X, Xiong Y, Kihara D. Large-scale binding ligand prediction by improved patch-based method patch-Surfer2.0. Bioinformatics. 2015;31(5):707\u201313.","journal-title":"Bioinformatics"},{"issue":"16","key":"2321_CR75","doi-asserted-by":"publisher","first-page":"e160","DOI":"10.1093\/nar\/gkt617","volume":"41","author":"X Zhu","year":"2013","unstructured":"Zhu X, Ericksen SS, Mitchell JC. DBSI: DNA-binding site identifier. Nucleic Acids Res. 2013;41(16):e160.","journal-title":"Nucleic Acids Res"},{"issue":"21","key":"2321_CR76","doi-asserted-by":"publisher","first-page":"2337","DOI":"10.2174\/1568026617666170414145508","volume":"17","author":"KC Chou","year":"2017","unstructured":"Chou KC. An unprecedented revolution in medicinal chemistry driven by the progress of biological science. Curr Top Med Chem. 2017;17(21):2337\u201358.","journal-title":"Curr Top Med Chem"}],"container-title":["BMC Bioinformatics"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1186\/s12859-018-2321-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1186\/s12859-018-2321-0\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1186\/s12859-018-2321-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,9,4]],"date-time":"2023-09-04T17:40:49Z","timestamp":1693849249000},"score":1,"resource":{"primary":{"URL":"https:\/\/bmcbioinformatics.biomedcentral.com\/articles\/10.1186\/s12859-018-2321-0"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,8,29]]},"references-count":76,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2018,12]]}},"alternative-id":["2321"],"URL":"https:\/\/doi.org\/10.1186\/s12859-018-2321-0","relation":{},"ISSN":["1471-2105"],"issn-type":[{"value":"1471-2105","type":"electronic"}],"subject":[],"published":{"date-parts":[[2018,8,29]]},"assertion":[{"value":"19 April 2018","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"21 August 2018","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"29 August 2018","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"Not applicable.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Ethics approval and consent to participate"}},{"value":"Not applicable.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Consent for publication"}},{"value":"The authors declare that they have no competing interests.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Competing interests"}},{"value":"Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.","order":4,"name":"Ethics","group":{"name":"EthicsHeading","label":"Publisher\u2019s Note"}}],"article-number":"306"}}