iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1177/0165551515588669
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,8]],"date-time":"2024-09-08T01:40:24Z","timestamp":1725759624753},"reference-count":73,"publisher":"SAGE Publications","issue":"5","license":[{"start":{"date-parts":[[2015,6,8]],"date-time":"2015-06-08T00:00:00Z","timestamp":1433721600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/journals.sagepub.com\/page\/policies\/text-and-data-mining-license"}],"content-domain":{"domain":["journals.sagepub.com"],"crossmark-restriction":true},"short-container-title":["Journal of Information Science"],"published-print":{"date-parts":[[2015,10]]},"abstract":" The creation of new and better recommendation algorithms for social networks is currently receiving much attention owing to the increasing need for new tools to assist users. The volume of available social data as well as experimental datasets force recommendation algorithms to scale to many computers. Given that social networks can be modelled as graphs, a distributed graph-oriented support able to exploit computer clusters arises as a necessity. In this work, we propose an architecture, called Lightweight-Massive Graph Processing Architecture, which simplifies the design of graph-based recommendation algorithms on clusters of computers, and a Java implementation for this architecture composed of two parts: Graphly, an API offering operations to access graphs; and jLiME, a framework that supports the distribution of algorithm code and graph data. The motivation behind the creation of this architecture is to allow users to define recommendation algorithms through the API and then customize their execution using job distribution strategies, without modifying the original algorithm. Thus, algorithms can be programmed and evaluated without the burden of thinking about distribution and parallel concerns, while still supporting environment-level tuning of the distributed execution. To validate the proposal, the current implementation of the architecture was tested using a followee recommendation algorithm for Twitter as case study. These experiments illustrate the graph API, quantitatively evaluate different job distribution strategies w.r.t. recommendation time and resource usage, and demonstrate the importance of providing non-invasive tuning for recommendation algorithms. <\/jats:p>","DOI":"10.1177\/0165551515588669","type":"journal-article","created":{"date-parts":[[2015,6,9]],"date-time":"2015-06-09T01:05:43Z","timestamp":1433811943000},"page":"686-704","update-policy":"http:\/\/dx.doi.org\/10.1177\/sage-journals-update-policy","source":"Crossref","is-referenced-by-count":23,"title":["An architecture and platform for developing distributed recommendation algorithms on large-scale social networks"],"prefix":"10.1177","volume":"41","author":[{"given":"Alejandro","family":"Corbellini","sequence":"first","affiliation":[{"name":"ISISTAN Research Institute, UNICEN University, Argentina"},{"name":"ISISTAN Research Institute, UNICEN University, Argentina"}]},{"given":"Cristian","family":"Mateos","sequence":"additional","affiliation":[{"name":"ISISTAN Research Institute, UNICEN University, Argentina"},{"name":"ISISTAN Research Institute, UNICEN University, Argentina"}]},{"given":"Daniela","family":"Godoy","sequence":"additional","affiliation":[{"name":"ISISTAN Research Institute, UNICEN University, Argentina"},{"name":"ISISTAN Research Institute, UNICEN University, Argentina"}]},{"given":"Alejandro","family":"Zunino","sequence":"additional","affiliation":[{"name":"ISISTAN Research Institute, UNICEN University, Argentina"},{"name":"ISISTAN Research Institute, UNICEN University, Argentina"}]},{"given":"Silvia","family":"Schiaffino","sequence":"additional","affiliation":[{"name":"ISISTAN Research Institute, UNICEN University, Argentina"}]}],"member":"179","published-online":{"date-parts":[[2015,6,8]]},"reference":[{"key":"bibr1-0165551515588669","doi-asserted-by":"publisher","DOI":"10.1016\/j.ins.2013.04.017"},{"key":"bibr2-0165551515588669","doi-asserted-by":"publisher","DOI":"10.1145\/2618243.2618283"},{"issue":"3","key":"bibr3-0165551515588669","first-page":"1315","volume":"10","author":"Wang X","year":"2014","journal-title":"Journal of Computational Information Systems"},{"key":"bibr4-0165551515588669","doi-asserted-by":"publisher","DOI":"10.1002\/int.20206"},{"key":"bibr5-0165551515588669","doi-asserted-by":"publisher","DOI":"10.1109\/ICME.2014.6890130"},{"key":"bibr6-0165551515588669","doi-asserted-by":"publisher","DOI":"10.1145\/2488388.2488433"},{"key":"bibr7-0165551515588669","doi-asserted-by":"publisher","DOI":"10.1016\/j.ipm.2014.02.003"},{"volume-title":"Understanding big data: Analytics for enterprise class Hadoop and streaming data","year":"2011","author":"Zikopoulos P","key":"bibr8-0165551515588669"},{"key":"bibr9-0165551515588669","doi-asserted-by":"publisher","DOI":"10.1109\/SURV.2011.032211.00087"},{"key":"bibr10-0165551515588669","doi-asserted-by":"publisher","DOI":"10.1145\/1807167.1807184"},{"key":"bibr11-0165551515588669","doi-asserted-by":"publisher","DOI":"10.1145\/2007183.2007185"},{"key":"bibr12-0165551515588669","first-page":"1","volume-title":"Proceedings of the 9th USENIX conference on operating systems design and implementation (OSDI\u201910)","volume":"10","author":"Power R","year":"2010"},{"key":"bibr13-0165551515588669","doi-asserted-by":"publisher","DOI":"10.14778\/2212351.2212354"},{"key":"bibr14-0165551515588669","doi-asserted-by":"publisher","DOI":"10.1145\/1327452.1327492"},{"key":"bibr15-0165551515588669","doi-asserted-by":"publisher","DOI":"10.1145\/79173.79181"},{"key":"bibr16-0165551515588669","doi-asserted-by":"publisher","DOI":"10.2298\/CSIS120712021M"},{"key":"bibr17-0165551515588669","doi-asserted-by":"publisher","DOI":"10.1016\/j.future.2007.04.011"},{"key":"bibr18-0165551515588669","doi-asserted-by":"publisher","DOI":"10.1007\/s11390-012-1249-5"},{"volume-title":"Proceedings of the international workshop on semantic adaptive social web (SASWeb\u201911)","year":"2011","author":"Armentano M","key":"bibr19-0165551515588669"},{"key":"bibr20-0165551515588669","unstructured":"Shao B, Wang H, Li Y. The Trinity Graph Engine, Microsoft Research, December, 2012, pp. 12\u201314, http:\/\/research.microsoft.com\/pubs\/161291\/trinity.pdf."},{"key":"bibr21-0165551515588669","doi-asserted-by":"publisher","DOI":"10.1145\/2484425.2484427"},{"key":"bibr22-0165551515588669","doi-asserted-by":"publisher","DOI":"10.1145\/324133.324140"},{"key":"bibr23-0165551515588669","unstructured":"Page L, Brin S, Motwani R, Winograd T. The PageRank citation ranking: Bringing order to the Web, Technical Report, Stanford InfoLab, 1999."},{"key":"bibr24-0165551515588669","doi-asserted-by":"publisher","DOI":"10.1145\/382979.383041"},{"key":"bibr25-0165551515588669","doi-asserted-by":"publisher","DOI":"10.1002\/int.20447"},{"key":"bibr26-0165551515588669","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-04329-1_21"},{"key":"bibr27-0165551515588669","unstructured":"SYSTAP LLC. BigData, 2013, http:\/\/www.blazegraph.com\/bigdata (accessed 14 April 2014)."},{"key":"bibr28-0165551515588669","doi-asserted-by":"publisher","DOI":"10.1038\/scientificamerican0501-34"},{"key":"bibr29-0165551515588669","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-540-76298-0_16"},{"key":"bibr30-0165551515588669","unstructured":"Think Aurelius. Titan. 2014, http:\/\/thinkaurelius.github.io\/titan\/ (accessed 14 April 2014)."},{"key":"bibr31-0165551515588669","unstructured":"The Apache Foundation. HBASE, 2014, http:\/\/hbase.apache.org\/ (accessed 20 August 2014)."},{"key":"bibr32-0165551515588669","unstructured":"The Apache Foundation. Cassandra, 2014, http:\/\/cassandra.apache.org\/ (accessed 20 August 2014)."},{"key":"bibr33-0165551515588669","unstructured":"Oracle. Oracle BerkeleyDB, 2014, http:\/\/www.oracle.com\/technetwork\/database\/database-technologies\/berkeleydb\/overview\/index.html (accessed 20 August 2014)."},{"key":"bibr34-0165551515588669","unstructured":"Hazelcast Inc. Hazelcast, 2014, http:\/\/hazelcast.com\/ (accessed 20 August 2014)."},{"key":"bibr35-0165551515588669","unstructured":"Tinkerpop. Blueprints, 2014, http:\/\/blueprints.tinkerpop.com\/ (accessed 19 August 2014)."},{"key":"bibr36-0165551515588669","unstructured":"Orient Technologies. Orient DB, 2014, http:\/\/orientdb.com\/orientdb\/ (accessed 20 August 2014)."},{"key":"bibr37-0165551515588669","unstructured":"Arango DB. Arango DB, 2014, https:\/\/www.arangodb.com\/ (accessed 20 August 2014)."},{"key":"bibr38-0165551515588669","unstructured":"Twitter Inc. FlockDB, 2013, https:\/\/github.com\/twitter\/flockdb (accessed 5 August 2013)."},{"key":"bibr39-0165551515588669","doi-asserted-by":"publisher","DOI":"10.1109\/71.993206"},{"volume-title":"Proceedings of the international parallel and distributed processing symposium (IPDPS\u201903)","year":"2003","author":"Kim J-K","key":"bibr40-0165551515588669"},{"key":"bibr41-0165551515588669","doi-asserted-by":"publisher","DOI":"10.1016\/j.physa.2010.11.027"},{"key":"bibr42-0165551515588669","doi-asserted-by":"publisher","DOI":"10.1177\/0165551514560121"},{"key":"bibr43-0165551515588669","doi-asserted-by":"publisher","DOI":"10.1177\/0165551514542902"},{"key":"bibr44-0165551515588669","doi-asserted-by":"publisher","DOI":"10.1103\/PhysRevE.80.046122"},{"key":"bibr45-0165551515588669","doi-asserted-by":"publisher","DOI":"10.1016\/j.infsof.2013.12.003"},{"key":"bibr46-0165551515588669","doi-asserted-by":"publisher","DOI":"10.1109\/SocialInformatics.2012.74"},{"key":"bibr47-0165551515588669","doi-asserted-by":"publisher","DOI":"10.1016\/j.ipm.2012.07.006"},{"key":"bibr48-0165551515588669","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-20161-5_94"},{"key":"bibr49-0165551515588669","doi-asserted-by":"publisher","DOI":"10.1145\/2370216.2370431"},{"volume-title":"KDD Cup Workshop","year":"2012","author":"Chen T","key":"bibr50-0165551515588669"},{"issue":"5","key":"bibr51-0165551515588669","first-page":"978","volume":"48","author":"Li Y-M","year":"2012","journal-title":"Large-Scale and Distributed Systems for Information Retrieval. Information Processing & Management"},{"volume-title":"Pattern-oriented software architecture: A system of patterns","year":"1996","author":"Buschmann F","key":"bibr52-0165551515588669"},{"key":"bibr53-0165551515588669","unstructured":"Tinkerpop. Gremlim, 2014 URL: http:\/\/gremlin.tinkerpop.com\/ (accessed 19 August 2014)."},{"key":"bibr54-0165551515588669","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4419-6045-0_4"},{"key":"bibr55-0165551515588669","unstructured":"Prud\u2019Hommeaux E, Seaborne A. SPARQL query language for RDF, W3C recommendation, January2008, Vol. 15."},{"key":"bibr56-0165551515588669","unstructured":"Neo Technology Inc. Neo4J, 2013 (accessed 5 August 2013)."},{"key":"bibr57-0165551515588669","unstructured":"Varda K. Protocol buffers: Google\u2019s data interchange format, 2008, http:\/\/google-opensource.blogspot.com\/2008\/07\/protocol-huffers-googles-data.html (accessed 19 August 2014)."},{"key":"bibr58-0165551515588669","unstructured":"The Apache Foundation. Apache Thrift, 2014, https:\/\/thrift.apache.org\/ (accessed 19 August 2014)."},{"volume-title":"Java RMI: Remote method invocation","year":"1998","author":"Downing TB","key":"bibr59-0165551515588669"},{"key":"bibr60-0165551515588669","unstructured":"Videla A, Williams JJW. RabbitMQ in action: distributed messaging for everyone. Manning, 2012."},{"key":"bibr61-0165551515588669","unstructured":"Ban B, JGroups, a toolkit for reliable multicast communication, 2002, http:\/\/www.jgroups.org"},{"key":"bibr62-0165551515588669","doi-asserted-by":"crossref","unstructured":"Google. LevelDB, 2014, https:\/\/github.com\/google\/leveldb (accessed 12 September 2014).","DOI":"10.1016\/S0969-4765(14)70164-X"},{"key":"bibr63-0165551515588669","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-10166-8_6"},{"key":"bibr64-0165551515588669","doi-asserted-by":"publisher","DOI":"10.1145\/1348549.1348556"},{"key":"bibr65-0165551515588669","doi-asserted-by":"publisher","DOI":"10.1145\/1397735.1397741"},{"key":"bibr66-0165551515588669","doi-asserted-by":"publisher","DOI":"10.1145\/1772690.1772751"},{"key":"bibr67-0165551515588669","doi-asserted-by":"publisher","DOI":"10.1109\/ICPP.2010.66"},{"key":"bibr68-0165551515588669","doi-asserted-by":"crossref","unstructured":"Lim KH, Datta A. Finding Twitter communities with common interests using following links of celebrities. In: Proceedings of the 3rd international workshop on modelling social media, MSM \u201812. New York: ACM, 2012, pp. 25\u201332, http:\/\/doi.acm.org\/10.1145\/2310057.2310064","DOI":"10.1145\/2310057.2310064"},{"key":"bibr69-0165551515588669","doi-asserted-by":"crossref","unstructured":"Hu X, Tang L, Tang J, Liu H. Exploiting social relations for sentiment analysis in microblogging. In: Proceedings of the sixth ACM international conference on Web search and data mining, WSDM \u201813. New York: ACM, 2013, pp. 537\u2013546, http:\/\/doi.acm.org\/10.1145\/2433396.2433465","DOI":"10.1145\/2433396.2433465"},{"volume-title":"Proceedings of the fifth international AAAI conference on weblogs and social media","year":"2011","author":"Brown PE","key":"bibr70-0165551515588669"},{"key":"bibr71-0165551515588669","doi-asserted-by":"crossref","unstructured":"Yu SJ. The dynamic competitive recommendation algorithm in social network services. Information Sciences 2012; 187: 1\u201314, http:\/\/www.sciencedirect.com\/science\/article\/pii\/S0020025511005718","DOI":"10.1016\/j.ins.2011.10.020"},{"key":"bibr72-0165551515588669","doi-asserted-by":"publisher","DOI":"10.1007\/s00607-012-0245-5"},{"key":"bibr73-0165551515588669","doi-asserted-by":"publisher","DOI":"10.1145\/1709093.1709096"}],"container-title":["Journal of Information Science"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/journals.sagepub.com\/doi\/pdf\/10.1177\/0165551515588669","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/journals.sagepub.com\/doi\/full-xml\/10.1177\/0165551515588669","content-type":"application\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/journals.sagepub.com\/doi\/pdf\/10.1177\/0165551515588669","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,9,8]],"date-time":"2024-09-08T00:35:47Z","timestamp":1725755747000},"score":1,"resource":{"primary":{"URL":"https:\/\/journals.sagepub.com\/doi\/10.1177\/0165551515588669"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,6,8]]},"references-count":73,"journal-issue":{"issue":"5","published-print":{"date-parts":[[2015,10]]}},"alternative-id":["10.1177\/0165551515588669"],"URL":"https:\/\/doi.org\/10.1177\/0165551515588669","relation":{},"ISSN":["0165-5515","1741-6485"],"issn-type":[{"type":"print","value":"0165-5515"},{"type":"electronic","value":"1741-6485"}],"subject":[],"published":{"date-parts":[[2015,6,8]]}}}