iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1145/3670947.3670950
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T22:54:40Z","timestamp":1730328880215,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":62,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2024,6,3]]},"DOI":"10.1145\/3670947.3670950","type":"proceedings-article","created":{"date-parts":[[2024,9,22]],"date-time":"2024-09-22T04:28:51Z","timestamp":1726979331000},"page":"1-11","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":0,"title":["Point Voxel Bi-directional Fusion Implicit Field for 3D Reconstruction"],"prefix":"10.1145","author":[{"ORCID":"http:\/\/orcid.org\/0009-0008-0209-2144","authenticated-orcid":false,"given":"Chuanmao","family":"Fan","sequence":"first","affiliation":[{"name":"University of Missouri, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6312-5316","authenticated-orcid":false,"given":"Chenxi","family":"Zhao","sequence":"additional","affiliation":[{"name":"Clemson University, USA"}]},{"ORCID":"http:\/\/orcid.org\/0009-0008-1960-1451","authenticated-orcid":false,"given":"Kevin","family":"Xue","sequence":"additional","affiliation":[{"name":"University of Missouri, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1166-7703","authenticated-orcid":false,"given":"Ye","family":"Duan","sequence":"additional","affiliation":[{"name":"Clemson University, USA"}]}],"member":"320","published-online":{"date-parts":[[2024,9,21]]},"reference":[{"volume-title":"Controlling neural level sets. Advances in Neural Information Processing Systems 32","year":"2019","author":"Atzmon Matan","key":"e_1_3_2_2_1_1","unstructured":"Matan Atzmon, Niv Haim, Lior Yariv, Ofer Israelov, Haggai Maron, and Yaron Lipman. 2019. Controlling neural level sets. Advances in Neural Information Processing Systems 32 (2019)."},{"key":"e_1_3_2_2_2_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.00620"},{"volume-title":"Shapenet: An information-rich 3d model repository. arXiv preprint arXiv:1512.03012","year":"2015","author":"Chang X","key":"e_1_3_2_2_3_1","unstructured":"Angel\u00a0X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, 2015. Shapenet: An information-rich 3d model repository. arXiv preprint arXiv:1512.03012 (2015)."},{"key":"e_1_3_2_2_4_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.isprsjprs.2022.09.017"},{"key":"e_1_3_2_2_5_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00609"},{"key":"e_1_3_2_2_6_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00700"},{"key":"e_1_3_2_2_7_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV51070.2023.00215"},{"key":"e_1_3_2_2_8_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-46484-8_38"},{"key":"e_1_3_2_2_9_1","doi-asserted-by":"publisher","DOI":"10.1109\/WACV51458.2022.00035"},{"volume-title":"Proceedings, Part V. Springer, 108\u2013124","year":"2020","author":"Erler Philipp","key":"e_1_3_2_2_10_1","unstructured":"Philipp Erler, Paul Guerrero, Stefan Ohrhallinger, Niloy\u00a0J Mitra, and Michael Wimmer. 2020. Points2surf learning implicit surfaces from point clouds. In Computer Vision\u2013ECCV 2020: 16th European Conference, Glasgow, UK, August 23\u201328, 2020, Proceedings, Part V. Springer, 108\u2013124."},{"volume-title":"Sparse 3D convolutional neural networks. arXiv preprint arXiv:1505.02890","year":"2015","author":"Graham Ben","key":"e_1_3_2_2_11_1","unstructured":"Ben Graham. 2015. Sparse 3D convolutional neural networks. arXiv preprint arXiv:1505.02890 (2015)."},{"volume-title":"Implicit geometric regularization for learning shapes. arXiv preprint arXiv:2002.10099","year":"2020","author":"Gropp Amos","key":"e_1_3_2_2_12_1","unstructured":"Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. 2020. Implicit geometric regularization for learning shapes. arXiv preprint arXiv:2002.10099 (2020)."},{"key":"e_1_3_2_2_13_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00030"},{"volume-title":"Denoising diffusion probabilistic models. Advances in neural information processing systems 33","year":"2020","author":"Ho Jonathan","key":"e_1_3_2_2_14_1","unstructured":"Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic models. Advances in neural information processing systems 33 (2020), 6840\u20136851."},{"key":"e_1_3_2_2_15_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00604"},{"volume-title":"Learning a multi-view stereo machine. Advances in neural information processing systems 30","year":"2017","author":"Kar Abhishek","key":"e_1_3_2_2_16_1","unstructured":"Abhishek Kar, Christian H\u00e4ne, and Jitendra Malik. 2017. Learning a multi-view stereo machine. Advances in neural information processing systems 30 (2017)."},{"key":"e_1_3_2_2_17_1","doi-asserted-by":"publisher","DOI":"10.1145\/2487228.2487237"},{"volume-title":"Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980","year":"2014","author":"Kingma P","key":"e_1_3_2_2_18_1","unstructured":"Diederik\u00a0P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)."},{"volume-title":"ABC: A Big CAD Model Dataset For Geometric Deep Learning. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).","year":"2019","author":"Koch Sebastian","key":"e_1_3_2_2_19_1","unstructured":"Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov, Evgeny Burnaev, Marc Alexa, Denis Zorin, and Daniele Panozzo. 2019. ABC: A Big CAD Model Dataset For Geometric Deep Learning. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)."},{"key":"e_1_3_2_2_20_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00959"},{"volume-title":"Spherical kernel for efficient graph convolution on 3d point clouds","year":"2020","author":"Lei Huan","key":"e_1_3_2_2_21_1","unstructured":"Huan Lei, Naveed Akhtar, and Ajmal Mian. 2020. Spherical kernel for efficient graph convolution on 3d point clouds. IEEE transactions on pattern analysis and machine intelligence 43, 10 (2020), 3664\u20133680."},{"key":"e_1_3_2_2_22_1","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v38i4.28100"},{"key":"e_1_3_2_2_23_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52729.2023.00817"},{"key":"e_1_3_2_2_24_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00308"},{"volume-title":"Point-voxel cnn for efficient 3d deep learning. Advances in Neural Information Processing Systems 32","year":"2019","author":"Liu Zhijian","key":"e_1_3_2_2_25_1","unstructured":"Zhijian Liu, Haotian Tang, Yujun Lin, and Song Han. 2019. Point-voxel cnn for efficient 3d deep learning. Advances in Neural Information Processing Systems 32 (2019)."},{"volume-title":"Marching cubes: A high resolution 3D surface construction algorithm. ACM siggraph computer graphics 21, 4","year":"1987","author":"Lorensen E","key":"e_1_3_2_2_26_1","unstructured":"William\u00a0E Lorensen and Harvey\u00a0E Cline. 1987. Marching cubes: A high resolution 3D surface construction algorithm. ACM siggraph computer graphics 21, 4 (1987), 163\u2013169."},{"key":"e_1_3_2_2_27_1","doi-asserted-by":"publisher","DOI":"10.1109\/IROS.2015.7353481"},{"key":"e_1_3_2_2_28_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00459"},{"key":"e_1_3_2_2_29_1","doi-asserted-by":"publisher","DOI":"10.1145\/3503250"},{"key":"e_1_3_2_2_30_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV48922.2021.00554"},{"key":"e_1_3_2_2_31_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00025"},{"volume-title":"Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32","year":"2019","author":"Paszke Adam","key":"e_1_3_2_2_32_1","unstructured":"Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, 2019. Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019)."},{"volume-title":"Shape As Points: A Differentiable Poisson Solver. (Jun","year":"2021","author":"Peng Songyou","key":"e_1_3_2_2_33_1","unstructured":"Songyou Peng, Chiyu\u00a0\"Max\" Jiang, Yiyi Liao, Michael Niemeyer, Marc Pollefeys, and Andreas Geiger. 2021. Shape As Points: A Differentiable Poisson Solver. (Jun 2021). http:\/\/arxiv.org\/abs\/2106.03452v2"},{"volume-title":"Proceedings, Part III 16","year":"2020","author":"Peng Songyou","key":"e_1_3_2_2_34_1","unstructured":"Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas Geiger. 2020. Convolutional occupancy networks. In Computer Vision\u2013ECCV 2020: 16th European Conference, Glasgow, UK, August 23\u201328, 2020, Proceedings, Part III 16. Springer, 523\u2013540."},{"volume-title":"Proceedings of the IEEE conference on computer vision and pattern recognition. 652\u2013660","year":"2017","author":"Qi R","key":"e_1_3_2_2_35_1","unstructured":"Charles\u00a0R Qi, Hao Su, Kaichun Mo, and Leonidas\u00a0J Guibas. 2017. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition. 652\u2013660."},{"volume-title":"Deep hierarchical feature learning on point sets in a metric space. Advances in neural information processing systems 30","year":"2017","author":"Qi Charles\u00a0Ruizhongtai","key":"e_1_3_2_2_36_1","unstructured":"Charles\u00a0Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas\u00a0J Guibas. 2017. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. Advances in neural information processing systems 30 (2017)."},{"key":"e_1_3_2_2_37_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.701"},{"volume-title":"U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention\u2013MICCAI 2015: 18th International Conference","year":"2015","author":"Ronneberger Olaf","key":"e_1_3_2_2_38_1","unstructured":"Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention\u2013MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18. Springer, 234\u2013241."},{"key":"e_1_3_2_2_39_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00239"},{"key":"e_1_3_2_2_40_1","doi-asserted-by":"crossref","unstructured":"Shunsuke Saito Tomas Simon Jason Saragih and Hanbyul Joo. 2020. PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization. In CVPR.","DOI":"10.1109\/CVPR42600.2020.00016"},{"key":"e_1_3_2_2_41_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.01054"},{"key":"e_1_3_2_2_42_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52729.2023.02001"},{"key":"e_1_3_2_2_43_1","first-page":"7462","article-title":"Implicit neural representations with periodic activation functions","volume":"33","author":"Sitzmann Vincent","year":"2020","unstructured":"Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. 2020. Implicit neural representations with periodic activation functions. Advances in Neural Information Processing Systems 33 (2020), 7462\u20137473.","journal-title":"Advances in Neural Information Processing Systems"},{"key":"e_1_3_2_2_44_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00651"},{"key":"e_1_3_2_2_45_1","first-page":"10021","article-title":"Lion: Latent point diffusion models for 3d shape generation","volume":"35","author":"Vahdat Arash","year":"2022","unstructured":"Arash Vahdat, Francis Williams, Zan Gojcic, Or Litany, Sanja Fidler, Karsten Kreis, 2022. Lion: Latent point diffusion models for 3d shape generation. Advances in Neural Information Processing Systems 35 (2022), 10021\u201310039.","journal-title":"Advances in Neural Information Processing Systems"},{"volume-title":"Dude: Deep unsigned distance embeddings for hi-fidelity representation of complex 3d surfaces. arXiv preprint arXiv:2011.02570","year":"2020","author":"Venkatesh Rahul","key":"e_1_3_2_2_46_1","unstructured":"Rahul Venkatesh, Sarthak Sharma, Aurobrata Ghosh, Laszlo Jeni, and Maneesh Singh. 2020. Dude: Deep unsigned distance embeddings for hi-fidelity representation of complex 3d surfaces. arXiv preprint arXiv:2011.02570 (2020)."},{"key":"e_1_3_2_2_47_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-031-20050-2_3"},{"key":"e_1_3_2_2_48_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV48922.2021.00567"},{"key":"e_1_3_2_2_49_1","doi-asserted-by":"publisher","DOI":"10.1109\/IV51971.2022.9827226"},{"volume-title":"Neus: Learning neural implicit surfaces by","year":"2021","author":"Wang Peng","key":"e_1_3_2_2_50_1","unstructured":"Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping Wang. 2021. Neus: Learning neural implicit surfaces by volume rendering for multi-view reconstruction. arXiv preprint arXiv:2106.10689 (2021)."},{"key":"e_1_3_2_2_51_1","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3072959.3073608","article-title":"O-cnn: Octree-based convolutional neural networks for 3d shape analysis","volume":"36","author":"Wang Peng-Shuai","year":"2017","unstructured":"Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. 2017. O-cnn: Octree-based convolutional neural networks for 3d shape analysis. ACM Transactions On Graphics (TOG) 36, 4 (2017), 1\u201311.","journal-title":"ACM Transactions On Graphics (TOG)"},{"volume-title":"Dynamic graph cnn for learning on point clouds. Acm Transactions On Graphics (tog) 38, 5","year":"2019","author":"Wang Yue","key":"e_1_3_2_2_52_1","unstructured":"Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay\u00a0E Sarma, Michael\u00a0M Bronstein, and Justin\u00a0M Solomon. 2019. Dynamic graph cnn for learning on point clouds. Acm Transactions On Graphics (tog) 38, 5 (2019), 1\u201312."},{"key":"e_1_3_2_2_53_1","doi-asserted-by":"publisher","DOI":"10.3390\/info15030148"},{"key":"e_1_3_2_2_54_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00985"},{"key":"e_1_3_2_2_55_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV48922.2021.01572"},{"volume-title":"DynoSurf: Neural Deformation-based Temporally Consistent Dynamic Surface Reconstruction. arXiv preprint arXiv:2403.11586","year":"2024","author":"Yao Yuxin","key":"e_1_3_2_2_56_1","unstructured":"Yuxin Yao, Siyu Ren, Junhui Hou, Zhi Deng, Juyong Zhang, and Wenping Wang. 2024. DynoSurf: Neural Deformation-based Temporally Consistent Dynamic Surface Reconstruction. arXiv preprint arXiv:2403.11586 (2024)."},{"key":"e_1_3_2_2_57_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.00569"},{"volume-title":"Monosdf: Exploring monocular geometric cues for neural implicit surface reconstruction. Advances in neural information processing systems 35","year":"2022","author":"Yu Zehao","key":"e_1_3_2_2_58_1","unstructured":"Zehao Yu, Songyou Peng, Michael Niemeyer, Torsten Sattler, and Andreas Geiger. 2022. Monosdf: Exploring monocular geometric cues for neural implicit surface reconstruction. Advances in neural information processing systems 35 (2022), 25018\u201325032."},{"key":"e_1_3_2_2_59_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-58586-0_38"},{"key":"e_1_3_2_2_60_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00571"},{"key":"e_1_3_2_2_61_1","first-page":"3D","article-title":"Thingi10K","volume":"10","author":"Zhou Qingnan","year":"2016","unstructured":"Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of 10, 000 3D-Printing Models. ArXiv abs\/1605.04797 (2016). https:\/\/api.semanticscholar.org\/CorpusID:39867743","journal-title":"A Dataset of"},{"key":"e_1_3_2_2_62_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00472"}],"event":{"name":"GI '24: Graphics Interface","acronym":"GI '24","location":"Halifax NS Canada"},"container-title":["Graphics Interface"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3670947.3670950","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,9,22]],"date-time":"2024-09-22T04:31:31Z","timestamp":1726979491000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3670947.3670950"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,6,3]]},"references-count":62,"alternative-id":["10.1145\/3670947.3670950","10.1145\/3670947"],"URL":"http:\/\/dx.doi.org\/10.1145\/3670947.3670950","relation":{},"subject":[],"published":{"date-parts":[[2024,6,3]]},"assertion":[{"value":"2024-09-21","order":3,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}