{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,5]],"date-time":"2024-11-05T05:03:54Z","timestamp":1730783034897,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":50,"publisher":"ACM","funder":[{"DOI":"10.13039\/https:\/\/doi.org\/10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","award":["FRF-TP-24-022A"],"id":[{"id":"10.13039\/https:\/\/doi.org\/10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]},{"name":"National Natural Science Foundation of China","award":["62176268"]},{"name":"National Key Research and Development Program of China","award":["2023YFC2508800"]},{"name":"Beijing Natural Science Foundation-Joint Funds of Haidian Original Innovation Project","award":["L232022"]}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2024,10,28]]},"DOI":"10.1145\/3664647.3681154","type":"proceedings-article","created":{"date-parts":[[2024,10,26]],"date-time":"2024-10-26T06:59:49Z","timestamp":1729925989000},"page":"3209-3218","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":0,"title":["Multi-view X-ray Image Synthesis with Multiple Domain Disentanglement from CT Scans"],"prefix":"10.1145","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-0323-8802","authenticated-orcid":false,"given":"Lixing","family":"Tan","sequence":"first","affiliation":[{"name":"University of Science and Technology Beijing, Beijing, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3262-7898","authenticated-orcid":false,"given":"Shuang","family":"Song","sequence":"additional","affiliation":[{"name":"University of Science and Technology Beijing, Beijing, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9102-9527","authenticated-orcid":false,"given":"Kangneng","family":"Zhou","sequence":"additional","affiliation":[{"name":"Nankai University, Tianjin, China"}]},{"ORCID":"http:\/\/orcid.org\/0009-0003-8334-4721","authenticated-orcid":false,"given":"Chengbo","family":"Duan","sequence":"additional","affiliation":[{"name":"University of Science and Technology Beijing, Beijing, China"}]},{"ORCID":"http:\/\/orcid.org\/0009-0001-4419-8528","authenticated-orcid":false,"given":"Lanying","family":"Wang","sequence":"additional","affiliation":[{"name":"University of Science and Technology Beijing, Beijing, China"}]},{"ORCID":"http:\/\/orcid.org\/0009-0001-0991-5157","authenticated-orcid":false,"given":"Huayang","family":"Ren","sequence":"additional","affiliation":[{"name":"University of Science and Technology Beijing, Beijing, China"}]},{"ORCID":"http:\/\/orcid.org\/0009-0002-2270-3789","authenticated-orcid":false,"given":"Linlin","family":"Liu","sequence":"additional","affiliation":[{"name":"University of Science and Technology Beijing, Beijing, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6671-8638","authenticated-orcid":false,"given":"Wei","family":"Zhang","sequence":"additional","affiliation":[{"name":"PLA General Hospital, Beijing, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2721-4813","authenticated-orcid":false,"given":"Ruoxiu","family":"Xiao","sequence":"additional","affiliation":[{"name":"University of Science and Technology Beijing, Beijing, China"}]}],"member":"320","published-online":{"date-parts":[[2024,10,28]]},"reference":[{"key":"e_1_3_2_1_1_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV48922.2021.00664"},{"key":"e_1_3_2_1_2_1","doi-asserted-by":"publisher","DOI":"10.1118\/1.3231824"},{"key":"e_1_3_2_1_3_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00354"},{"key":"e_1_3_2_1_4_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11042-023-15029-1"},{"volume-title":"Demystifying mmd gans. arXiv preprint arXiv:1801.01401","year":"2018","author":"Bi'nkowski Miko\u0142aj","key":"e_1_3_2_1_5_1","unstructured":"Miko\u0142aj Bi'nkowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton. 2018. Demystifying mmd gans. arXiv preprint arXiv:1801.01401 (2018)."},{"key":"e_1_3_2_1_6_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV51070.2023.01960"},{"key":"e_1_3_2_1_7_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.01565"},{"volume-title":"Pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis. arxiv","year":"2012","author":"Chan Eric R.","key":"e_1_3_2_1_8_1","unstructured":"Eric R. Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and Gordon Wetzstein. 2021. Pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis. arxiv: 2012.00926"},{"volume-title":"Meshgan: Non-linear 3d morphable models of faces. arXiv preprint arXiv:1903.10384","year":"2019","author":"Cheng Shiyang","key":"e_1_3_2_1_9_1","unstructured":"Shiyang Cheng, Michael Bronstein, Yuxiang Zhou, Irene Kotsia, Maja Pantic, and Stefanos Zafeiriou. 2019. Meshgan: Non-linear 3d morphable models of faces. arXiv preprint arXiv:1903.10384 (2019)."},{"key":"e_1_3_2_1_10_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00581"},{"key":"e_1_3_2_1_11_1","doi-asserted-by":"publisher","DOI":"10.1109\/VISUAL.2003.1250406"},{"key":"e_1_3_2_1_12_1","unstructured":"Yang Deng Ce Wang Yuan Hui Qian Li Jun Li Shiwei Luo Mengke Sun Quan Quan Shuxin Yang You Hao et al. 2021. Ctspine1k: A large-scale dataset for spinal vertebrae segmentation in computed tomography. arXiv preprint arXiv:2105.14711 (2021)."},{"key":"e_1_3_2_1_13_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.radonc.2020.10.004"},{"volume-title":"Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural information processing systems","year":"2017","author":"Heusel Martin","key":"e_1_3_2_1_14_1","unstructured":"Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. 2017. Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural information processing systems, Vol. 30 (2017)."},{"key":"e_1_3_2_1_15_1","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v38i3.28008"},{"key":"e_1_3_2_1_16_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.167"},{"key":"e_1_3_2_1_17_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.cosrev.2023.100553"},{"key":"e_1_3_2_1_18_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.632"},{"volume-title":"Progressive growing of gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196","year":"2017","author":"Karras Tero","key":"e_1_3_2_1_19_1","unstructured":"Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2017. Progressive growing of gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)."},{"volume-title":"A Style-Based Generator Architecture for Generative Adversarial Networks. arxiv","year":"1812","author":"Karras Tero","key":"e_1_3_2_1_20_1","unstructured":"Tero Karras, Samuli Laine, and Timo Aila. 2019. A Style-Based Generator Architecture for Generative Adversarial Networks. arxiv: 1812.04948"},{"key":"e_1_3_2_1_21_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00813"},{"key":"e_1_3_2_1_22_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-61598-7_12"},{"key":"e_1_3_2_1_23_1","doi-asserted-by":"publisher","DOI":"10.1145\/3592433"},{"key":"e_1_3_2_1_24_1","doi-asserted-by":"publisher","DOI":"10.1148\/radiol.221257"},{"key":"e_1_3_2_1_25_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11548-020-02157-4"},{"key":"e_1_3_2_1_26_1","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2020.2986242"},{"key":"e_1_3_2_1_27_1","doi-asserted-by":"publisher","DOI":"10.1088\/0031-9155\/51\/11\/004"},{"volume-title":"Advances in 3D Generation: A Survey. arXiv preprint arXiv:2401.17807","year":"2024","author":"Zhihao Jingbo","key":"e_1_3_2_1_28_1","unstructured":"Jingbo Zhang3 Zhihao Liang4 Jing Liao, Yan-Pei Cao, and Ying Shan. 2024. Advances in 3D Generation: A Survey. arXiv preprint arXiv:2401.17807 (2024)."},{"key":"e_1_3_2_1_29_1","doi-asserted-by":"publisher","DOI":"10.3390\/info15040189"},{"volume-title":"Bastian Bier, Javad Fotouhi, Mehran Armand, and Nassir Navab.","year":"2018","author":"Unberath Mathias","key":"e_1_3_2_1_30_1","unstructured":"Mathias Unberath, Jan-Nico Zaech, Sing Chun Lee, Bastian Bier, Javad Fotouhi, Mehran Armand, and Nassir Navab. 2018. DeepDRR -- A Catalyst for Machine Learning in Fluoroscopy-Guided Procedures. arXiv:1803.08606 [physics] (2018). arxiv: 1803.08606"},{"key":"e_1_3_2_1_31_1","volume-title":"Proceedings of the 35th International Conference on Machine Learning (Proceedings of Machine Learning Research","volume":"3490","author":"Mescheder Lars","year":"2018","unstructured":"Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. 2018. Which Training Methods for GANs do actually Converge?. In Proceedings of the 35th International Conference on Machine Learning (Proceedings of Machine Learning Research, Vol. 80), Jennifer Dy and Andreas Krause (Eds.). PMLR, 3481--3490. https:\/\/proceedings.mlr.press\/v80\/mescheder18a.html"},{"key":"e_1_3_2_1_32_1","doi-asserted-by":"publisher","DOI":"10.1111\/1467-9566.ep11373066"},{"volume-title":"Pivotal tuning for latent-based editing of real images. ACM Transactions on graphics (TOG)","year":"2022","author":"Roich Daniel","key":"e_1_3_2_1_33_1","unstructured":"Daniel Roich, Ron Mokady, Amit H Bermano, and Daniel Cohen-Or. 2022. Pivotal tuning for latent-based editing of real images. ACM Transactions on graphics (TOG), Vol. 42, 1 (2022), 1--13."},{"key":"e_1_3_2_1_34_1","doi-asserted-by":"publisher","DOI":"10.1186\/s41747-023-00412-2"},{"volume-title":"Novel-view X-ray projection synthesis through geometry-integrated deep learning. Medical image analysis","year":"2022","author":"Shen Liyue","key":"e_1_3_2_1_35_1","unstructured":"Liyue Shen, Lequan Yu, Wei Zhao, John Pauly, and Lei Xing. 2022. Novel-view X-ray projection synthesis through geometry-integrated deep learning. Medical image analysis, Vol. 77 (2022), 102372."},{"key":"e_1_3_2_1_36_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00926"},{"volume-title":"Digital X-ray Tomography: Edited by VI Syryamkin","author":"Syryamkin VI","key":"e_1_3_2_1_37_1","unstructured":"VI Syryamkin, SA Klestov, and SB Suntsov. 2020. Digital X-ray Tomography: Edited by VI Syryamkin. Red Square Scientific, Ltd."},{"volume-title":"Measurement and detection of radiation","author":"Tsoulfanidis Nicholas","key":"e_1_3_2_1_38_1","unstructured":"Nicholas Tsoulfanidis and Sheldon Landsberger. 2021. Measurement and detection of radiation. CRC press."},{"volume-title":"Javad Fotouhi, Russell Taylor, Mehran Armand, and Nassir Navab.","year":"2019","author":"Unberath Mathias","key":"e_1_3_2_1_39_1","unstructured":"Mathias Unberath, Jan-Nico Zaech, Cong Gao, Bastian Bier, Florian Goldmann, Sing Chun Lee, Javad Fotouhi, Russell Taylor, Mehran Armand, and Nassir Navab. 2019. Enabling machine learning in X-ray-based procedures via realistic simulation of image formation. International journal of computer assisted radiology and surgery, Vol. 14 (2019), 1517--1528."},{"volume-title":"Fast Auto-Differentiable Digitally Reconstructed Radiographs for Solving Inverse Problems in Intraoperative Imaging. In Workshop on Clinical Image-Based Procedures. Switzerland. arxiv: 2208","year":"2022","author":"Gopalakrishnan Vivek","key":"e_1_3_2_1_40_1","unstructured":"Vivek Gopalakrishnan and Polina Golland. 2022. Fast Auto-Differentiable Digitally Reconstructed Radiographs for Solving Inverse Problems in Intraoperative Imaging. In Workshop on Clinical Image-Based Procedures. Switzerland. arxiv: 2208.12737"},{"key":"e_1_3_2_1_41_1","doi-asserted-by":"publisher","DOI":"10.1109\/WACV57701.2024.00052"},{"key":"e_1_3_2_1_42_1","doi-asserted-by":"publisher","DOI":"10.1038\/s43586-021-00015-4"},{"volume-title":"Murf: Mutually reinforcing multi-modal image registration and fusion","year":"2023","author":"Xu Han","key":"e_1_3_2_1_43_1","unstructured":"Han Xu, Jiteng Yuan, and Jiayi Ma. 2023. Murf: Mutually reinforcing multi-modal image registration and fusion. IEEE transactions on pattern analysis and machine intelligence (2023)."},{"key":"e_1_3_2_1_44_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.01087"},{"key":"e_1_3_2_1_45_1","doi-asserted-by":"publisher","DOI":"10.3390\/electronics12051199"},{"volume-title":"Stackgan: Realistic image synthesis with stacked generative adversarial networks","year":"2018","author":"Zhang Han","key":"e_1_3_2_1_46_1","unstructured":"Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, and Dimitris N Metaxas. 2018. Stackgan: Realistic image synthesis with stacked generative adversarial networks. IEEE transactions on pattern analysis and machine intelligence, Vol. 41, 8 (2018), 1947--1962."},{"key":"e_1_3_2_1_47_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00068"},{"volume-title":"TreeGAN: Incorporating Class Hierarchy into Image Generation. arXiv preprint arXiv:2009.07734","year":"2020","author":"Zhang Ruisi","key":"e_1_3_2_1_48_1","unstructured":"Ruisi Zhang, Luntian Mou, and Pengtao Xie. 2020. TreeGAN: Incorporating Class Hierarchy into Image Generation. arXiv preprint arXiv:2009.07734 (2020)."},{"volume-title":"Computer Graphics Forum","author":"Zheng Xinyang","key":"e_1_3_2_1_49_1","unstructured":"Xinyang Zheng, Yang Liu, Pengshuai Wang, and Xin Tong. 2022. SDF-StyleGAN: Implicit SDF-Based StyleGAN for 3D Shape Generation. In Computer Graphics Forum, Vol. 41. Wiley Online Library, 52--63."},{"key":"e_1_3_2_1_50_1","doi-asserted-by":"publisher","DOI":"10.1109\/JMASS.2023.3244848"}],"event":{"name":"MM '24: The 32nd ACM International Conference on Multimedia","sponsor":["SIGMM ACM Special Interest Group on Multimedia"],"location":"Melbourne VIC Australia","acronym":"MM '24"},"container-title":["Proceedings of the 32nd ACM International Conference on Multimedia"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3664647.3681154","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,4]],"date-time":"2024-11-04T04:51:21Z","timestamp":1730695881000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3664647.3681154"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,10,28]]},"references-count":50,"alternative-id":["10.1145\/3664647.3681154","10.1145\/3664647"],"URL":"https:\/\/doi.org\/10.1145\/3664647.3681154","relation":{},"subject":[],"published":{"date-parts":[[2024,10,28]]},"assertion":[{"value":"2024-10-28","order":3,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}